⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 floatsamplebuffer.java

📁 java处理声音文件
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* * FloatSampleBuffer.java *//* *  Copyright (c) 2000 by Florian Bomers <florian@bome.com> * * *   This program is free software; you can redistribute it and/or modify *   it under the terms of the GNU Library General Public License as published *   by the Free Software Foundation; either version 2 of the License, or *   (at your option) any later version. * *   This program is distributed in the hope that it will be useful, *   but WITHOUT ANY WARRANTY; without even the implied warranty of *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *   GNU Library General Public License for more details. * *   You should have received a copy of the GNU Library General Public *   License along with this program; if not, write to the Free Software *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */package	org.tritonus.sampled;import	java.util.ArrayList;import	java.util.Iterator;import	java.util.Random;import	javax.sound.sampled.AudioSystem;import	javax.sound.sampled.AudioFormat;import	javax.sound.sampled.AudioFileFormat;import	javax.sound.sampled.AudioInputStream;import	javax.sound.sampled.spi.AudioFileWriter;import	org.tritonus.TDebug;/** * A class for small buffers of samples in linear, 32-bit * floating point format. All samples are normalized to the * interval [-1.0...1.0]. * <p> * It is supposed to be a replacement of the byte[] stream * architecture of JavaSound, especially for chains of * AudioInputStreams. Ideally, all involved AudioInputStreams * handle reading into a FloatSampleBuffer.  * <p> * Using a FloatSampleBuffer for streaming has some advantages: * <ul> * <li>no conversions from bytes have to be done during processing * <li>the sample size in bits is irrelevant - normalized range * <li>higher quality for processing * <li>separated channels * <li>potentially less copying of audio data, as processing * of the float samples is generally done in-place. The same * instance of a FloatSampleBuffer may be used from the data source * to the final data sink. * </ul> * Simple benchmarks showed that the computational power * used by the conversion to and from float * is neglectible without dithering, and significantly higher * with dithering. An own implementation of a random number * generator may improve this. * <p> * It supports &quot;lazy&quot; deletion of samples and channels: * <ul> * <li>When the sample count is reduced, the arrays are not resized, but * only the member variable <code>sampleCount</code> is reduced. A subsequent * increase of the sample count (which will occur frequently), will check * that and eventually reuse the existing array. * <li>When a channel is deleted, it is not removed from memory but only * hidden. Subsequent insertions of a channel will check whether a hidden channel * can be reused. * </ul> * The lazy mechanism can save many array instantiation (and copy-) operations * for the sake of performance. All relevant methods exist in a second * version which allows explicitely to disable lazy deletion. * <p> * Use the <code>reset</code> functions to clear the memory and remove  * hidden samples and channels. * <p> * Note that the lazy mechanism implies that the arrays returned * from <code>getChannel(int)</code> may have a greater size * than getSampleCount(). Consequently, be sure to never rely on the  * length field of the sample arrays. * <p> * As an example, consider a chain of converters that all act * on the same instance of FloatSampleBuffer. Some converters * may decrease the sample count (e.g. sample rate converter) and * delete channels (e.g. PCM2PCM converter). So, processing of one * chunk will decrease both. For the next chunk, all starts * from the beginning. With the lazy mechanism, all float arrays * are only created once for processing all chunks.<br> * Having lazy disabled would require for each chunk that is processed * <ol> * <li>new instantiation of all channel arrays * at the converter chain beginning as they have been * either deleted or decreased in size during processing of the  * previous chunk, and * <li>re-instantiation of all channel arrays for * the reduction of the sample count. * </ol> * <p> * By default, this class uses dithering for reduction  * of sample width (e.g. original data was 16bit, target  * data is 8bit). As dithering may be needed in other cases  * (especially when the float samples are processed using DSP * algorithms), or it is preferred to switch it off, * dithering can be explicitely switched on or off with * the method setDitherMode(int).<br> * For a discussion about dithering, see * <a href="http://www.iqsoft.com/IQSMagazine/BobsSoapbox/Dithering.htm"> * here</a> and  * <a href="http://www.iqsoft.com/IQSMagazine/BobsSoapbox/Dithering2.htm"> * here</a>. * * @author Florian Bomers */public class FloatSampleBuffer {	/** Whether the functions without lazy parameter are lazy or not. */	private static final boolean LAZY_DEFAULT=true;	private ArrayList channels=new ArrayList(); // contains for each channel a float array	private int sampleCount=0;	private int channelCount=0;	private float sampleRate=0;	private int originalFormatType=0;	/** Constant for setDitherMode: dithering will be enabled if sample size is decreased */	public static final int DITHER_MODE_AUTOMATIC=0;	/** Constant for setDitherMode: dithering will be done */	public static final int DITHER_MODE_ON=1;	/** Constant for setDitherMode: dithering will not be done */	public static final int DITHER_MODE_OFF=2;	private static Random random=null;	private float ditherBits=0.8f;	private boolean doDither=false; // set in convertFloatToBytes	// e.g. the sample rate converter may want to force dithering	private int ditherMode=DITHER_MODE_AUTOMATIC;	// sample width (must be in order !)	private static final int F_8=1;	private static final int F_16=2;	private static final int F_24=3;	private static final int F_32=4;	private static final int F_SAMPLE_WIDTH_MASK=F_8 | F_16 | F_24 | F_32;	// format bit-flags	private static final int F_SIGNED=8;	private static final int F_BIGENDIAN=16;	// supported formats	private static final int CT_8S=F_8 | F_SIGNED;	private static final int CT_8U=F_8;	private static final int CT_16SB=F_16 | F_SIGNED | F_BIGENDIAN;	private static final int CT_16SL=F_16 | F_SIGNED;	private static final int CT_24SB=F_24 | F_SIGNED | F_BIGENDIAN;	private static final int CT_24SL=F_24 | F_SIGNED;	private static final int CT_32SB=F_32 | F_SIGNED | F_BIGENDIAN;	private static final int CT_32SL=F_32 | F_SIGNED;	//////////////////////////////// initialization /////////////////////////////////	public FloatSampleBuffer() {		this(0,0,1);	}	public FloatSampleBuffer(int channelCount, int sampleCount, float sampleRate) {		init(channelCount, sampleCount, sampleRate, LAZY_DEFAULT);	}	public FloatSampleBuffer(byte[] buffer, int offset, int byteCount,	                         AudioFormat format) {		this(format.getChannels(),		     byteCount/(format.getSampleSizeInBits()/8*format.getChannels()),		     format.getSampleRate());		initFromByteArray(buffer, offset, byteCount, format);	}	protected void init(int channelCount, int sampleCount, float sampleRate) {		init(channelCount, sampleCount, sampleRate, LAZY_DEFAULT);	}	protected void init(int channelCount, int sampleCount, float sampleRate, boolean lazy) {		if (channelCount<0 || sampleCount<0) {			throw new IllegalArgumentException(			    "Invalid parameters in initialization of FloatSampleBuffer.");		}		setSampleRate(sampleRate);		if (getSampleCount()!=sampleCount || getChannelCount()!=channelCount) {			createChannels(channelCount, sampleCount, lazy);		}	}	private void createChannels(int channelCount, int sampleCount, boolean lazy) {		this.sampleCount=sampleCount;		// lazy delete of all channels. Intentionally lazy !		this.channelCount=0;		for (int ch=0; ch<channelCount; ch++) {			insertChannel(ch, false, lazy);		}		if (!lazy) {			// remove hidden channels			while (channels.size()>channelCount) {				channels.remove(channels.size()-1);			}		}	}	public void initFromByteArray(byte[] buffer, int offset, int byteCount,	                              AudioFormat format) {		initFromByteArray(buffer, offset, byteCount, format, LAZY_DEFAULT);	}	public void initFromByteArray(byte[] buffer, int offset, int byteCount,	                              AudioFormat format, boolean lazy) {		if (offset+byteCount>buffer.length) {			throw new IllegalArgumentException			("FloatSampleBuffer.initFromByteArray: buffer too small.");		}		boolean signed=format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED);		if (!signed &&		        !format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED)) {			throw new IllegalArgumentException			("FloatSampleBuffer: only PCM samples are possible.");		}		int bytesPerSample=format.getSampleSizeInBits()/8;		int bytesPerFrame=bytesPerSample*format.getChannels();		int thisSampleCount=byteCount/bytesPerFrame;		init(format.getChannels(), thisSampleCount, format.getSampleRate(), lazy);		int formatType=getFormatType(format.getSampleSizeInBits(),		                             signed, format.isBigEndian());		// save format for automatic dithering mode		originalFormatType=formatType;		for (int ch=0; ch<format.getChannels(); ch++) {			convertByteToFloat(buffer, offset, sampleCount, getChannel(ch),			                   bytesPerFrame, formatType);			offset+=bytesPerSample; // next channel		}	}	public void initFromFloatSampleBuffer(FloatSampleBuffer source) {		init(source.getChannelCount(), source.getSampleCount(), source.getSampleRate());		for (int ch=0; ch<getChannelCount(); ch++) {			System.arraycopy(source.getChannel(ch), 0, getChannel(ch), 0, sampleCount);		}	}	/**	 * deletes all channels, frees memory...	 * This also removes hidden channels by lazy remove.	 */	public void reset() {		init(0,0,1, false);	}	/**	 * destroys any existing data and creates new channels.	 * It also destroys lazy removed channels and samples.	 */	public void reset(int channels, int sampleCount, float sampleRate) {		init(channels, sampleCount, sampleRate, false);	}	//////////////////////////////// conversion back to bytes /////////////////////////////////	/**	 * returns the required size of the buffer	 * when convertToByteArray(..) is called	 */	public int getByteArrayBufferSize(AudioFormat format) {		if (!format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED) &&		        !format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED)) {			throw new IllegalArgumentException			("FloatSampleBuffer: only PCM samples are possible.");		}		int bytesPerSample=format.getSampleSizeInBits()/8;		int bytesPerFrame=bytesPerSample*format.getChannels();		return bytesPerFrame*getSampleCount();	}	/**	 * throws exception when buffer is too small or <code>format</code> doesn't match	 */	public void convertToByteArray(byte[] buffer, int offset, AudioFormat format) {		int byteCount=getByteArrayBufferSize(format);		if (offset+byteCount>buffer.length) {			throw new IllegalArgumentException			("FloatSampleBuffer.convertToByteArray: buffer too small.");		}		boolean signed=format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED);		if (!signed &&		        !format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED)) {			throw new IllegalArgumentException			("FloatSampleBuffer.convertToByteArray: only PCM samples are allowed.");		}		if (format.getSampleRate()!=getSampleRate()) {			throw new IllegalArgumentException			("FloatSampleBuffer.convertToByteArray: different samplerates.");		}		if (format.getChannels()!=getChannelCount()) {			throw new IllegalArgumentException			("FloatSampleBuffer.convertToByteArray: different channel count.");		}		int bytesPerSample=format.getSampleSizeInBits()/8;		int bytesPerFrame=bytesPerSample*format.getChannels();		int formatType=getFormatType(format.getSampleSizeInBits(),		                             signed, format.isBigEndian());		for (int ch=0; ch<format.getChannels(); ch++) {			convertFloatToByte(getChannel(ch), sampleCount,			                   buffer, offset,			                   bytesPerFrame, formatType);			offset+=bytesPerSample; // next channel		}	}		/**	 * Creates a new byte[] buffer and returns it.	 * Throws an exception when sample rate doesn't match.	 * @see #convertToByteArray(byte[], int, AudioFormat)	 *	public byte[] convertToByteArray(AudioFormat format) {		// throws exception when sampleRate doesn't match		// creates a new byte[] buffer and returns it		byte[] res=new byte[getByteArrayBufferSize(format)];		convertToByteArray(res, 0, format);		return res;	}	//////////////////////////////// actions /////////////////////////////////	/**	 * Resizes this buffer.	 * <p>If <code>keepOldSamples</code> is true, as much as possible samples are	 * retained. If the buffer is enlarged, silence is added at the end.	 * If <code>keepOldSamples</code> is false, existing samples are discarded	 * and the buffer contains random samples.	 */	public void changeSampleCount(int newSampleCount, boolean keepOldSamples) {		int oldSampleCount=getSampleCount();		Object[] oldChannels=null;		if (keepOldSamples) {			oldChannels=getAllChannels();		}		init(getChannelCount(), newSampleCount, getSampleRate());		if (keepOldSamples) {			// copy old channels and eventually silence out new samples			int copyCount=newSampleCount<oldSampleCount?			              newSampleCount:oldSampleCount;			for (int ch=0; ch<getChannelCount(); ch++) {				float[] oldSamples=(float[]) oldChannels[ch];				float[] newSamples=(float[]) getChannel(ch);				if (oldSamples!=newSamples) {					// if this sample array was not object of lazy delete					System.arraycopy(oldSamples, 0, newSamples, 0, copyCount);				}				if (oldSampleCount<newSampleCount) {					// silence out new samples					for (int i=oldSampleCount; i<newSampleCount; i++) {						newSamples[i]=0.0f;					}				}			}		}	}	public void makeSilence() {		// silence all channels		if (getChannelCount()>0) {			makeSilence(0);			for (int ch=1; ch<getChannelCount(); ch++) {				copyChannel(0, ch);			}		}	}	public void makeSilence(int channel) {		float[] samples=getChannel(0);		for (int i=0; i<getSampleCount(); i++) {			samples[i]=0.0f;		}	}	public void addChannel(boolean silent) {		// creates new, silent channel		insertChannel(getChannelCount(), silent);	}	/**	 * lazy insert of a (silent) channel at position <code>index</code>.	 */	public void insertChannel(int index, boolean silent) {		insertChannel(index, silent, LAZY_DEFAULT);	}	/**	 * Inserts a channel at position <code>index</code>.	 * <p>If <code>silent</code> is true, the new channel will be silent. 	 * Otherwise it will contain random data.	 * <p>If <code>lazy</code> is true, hidden channels which have at least getSampleCount()	 * elements will be examined for reusage as inserted channel.<br>	 * If <code>lazy</code> is false, still hidden channels are reused,	 * but it is assured that the inserted channel has exactly getSampleCount() elements,	 * thus not wasting memory.	 */	public void insertChannel(int index, boolean silent, boolean lazy) {		int physSize=channels.size();		int virtSize=getChannelCount();

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -