📄 three_d.cpp
字号:
/* Copyright (C) 2006 Massachusetts Institute of Technology %% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2, or (at your option)% any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software Foundation,% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.*/#include <stdio.h>#include <stdlib.h>#include <signal.h>#include <meep.hpp>using namespace meep;double one(const vec &) { return 1.0; }double targets(const vec &v) { const double r = sqrt(v.x()*v.x() + v.y()*v.y()); double dr = r; while (dr > 1) dr -= 1; if (dr > 0.7001) return 12.0; return 1.0;}int compare(double a, double b, const char *n) { if (fabs(a-b) > fabs(b)*2.0e-12) { master_printf("%s differs by\t%g out of\t%g\n", n, a-b, b); master_printf("This gives a fractional error of %g\n", fabs(a-b)/fabs(b)); return 0; } else { return 1; }}int compare_point(fields &f1, fields &f2, const vec &p) { monitor_point m1, m_test; f1.get_point(&m_test, p); f2.get_point(&m1, p); for (int i=0;i<10;i++) { component c = (component) i; if (f1.v.has_field(c)) { complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c); if (abs(v1 - v2) > 0.0*2e-15*abs(v2)) { master_printf("%s differs: %g %g out of %g %g\n", component_name(c), real(v2-v1), imag(v2-v1), real(v2), imag(v2)); master_printf("This comes out to a fractional error of %g\n", abs(v1 - v2)/abs(v2)); master_printf("Right now I'm looking at %g %g %g, time %g\n", p.x(), p.y(), p.z(), f1.time()); return 0; } } } return 1;}int approx_point(fields &f1, fields &f2, const vec &p) { monitor_point m1, m_test; f1.get_point(&m_test, p); f2.get_point(&m1, p); for (int i=0;i<10;i++) { component c = (component) i; if (f1.v.has_field(c)) { complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c); if (abs(v1 - v2) > 1e-14*(5.0 + abs(v2))) { master_printf("%s differs: %g %g out of %g %g\n", component_name(c), real(v2-v1), imag(v2-v1), real(v2), imag(v2)); master_printf("This comes out to a fractional error of %g\n", abs(v1 - v2)/abs(v2)); master_printf("Right now I'm looking at %g %g %g, time %g\n", p.x(), p.y(), p.z(), f1.time()); return 0; } } } return 1;}int test_metal(double eps(const vec &), int splitting, const char *mydirname) { double a = 10.0; double ttot = 17.0; volume v = vol3d(1.5, 0.5, 1.0, a); structure s1(v, eps); structure s(v, eps, no_pml(), identity(), splitting); s.set_output_directory(mydirname); s1.set_output_directory(mydirname); master_printf("Metal test using %d chunks...\n", splitting); fields f(&s); f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299,0.299,0.401), 1.0); fields f1(&s1); f1.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299,0.299,0.401), 1.0); double total_energy_check_time = 8.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, vec(0.5 , 0.5 , 0.01))) return 0; if (!compare_point(f, f1, vec(0.46 , 0.33 , 0.33))) return 0; if (!compare_point(f, f1, vec(1.301 , 0.301 , 0.399 ))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; total_energy_check_time += 5.0; } } return 1;}int test_periodic(double eps(const vec &), int splitting, const char *mydirname) { double a = 10.0; double ttot = 17.0; volume v = vol3d(1.5, 0.5, 1.0, a); structure s1(v, eps); structure s(v, eps, no_pml(), identity(), splitting); s.set_output_directory(mydirname); s1.set_output_directory(mydirname); master_printf("Periodic test using %d chunks...\n", splitting); fields f(&s); f.use_bloch(vec(0.1,0.7,0.3)); f.add_point_source(Ez, 0.7, 2.5, 0.0, 4.0, vec(0.3,0.25,0.5), 1.0); fields f1(&s1); f1.use_bloch(vec(0.1,0.7,0.3)); f1.add_point_source(Ez, 0.7, 2.5, 0.0, 4.0, vec(0.3,0.25,0.5), 1.0); double total_energy_check_time = 8.0; while (f.time() < ttot) { f.step(); f1.step(); if (!compare_point(f, f1, vec(0.5 , 0.01, 0.5 ))) return 0; if (!compare_point(f, f1, vec(0.46 , 0.33, 0.2 ))) return 0; if (!compare_point(f, f1, vec(1.0 , 0.25 , 0.301))) return 0; if (f.time() >= total_energy_check_time) { if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; if (!compare(f.electric_energy_in_box(v.surroundings()), f1.electric_energy_in_box(v.surroundings()), "electric energy")) return 0; if (!compare(f.magnetic_energy_in_box(v.surroundings()), f1.magnetic_energy_in_box(v.surroundings()), "magnetic energy")) return 0; total_energy_check_time += 5.0; } } return 1;}int test_pml(double eps(const vec &), const char *mydirname) { double a = 10.0; volume v = vol3d(1.5, 1.0, 1.2, a); structure s(v, eps, pml(0.401)); s.set_output_directory(mydirname); master_printf("Testing pml quality...\n"); fields f(&s); f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(0.751,0.5,0.601), 1.0); const double deltaT = 10.0; const double ttot = 3.1*deltaT; double total_energy_check_time = deltaT; while (f.time() < f.last_source_time()) f.step(); double last_energy = f.total_energy(); while (f.time() < ttot) { f.step(); if (f.time() >= total_energy_check_time) { const double new_energy = f.total_energy(); if (new_energy > last_energy*4e-3) { // FIXME: problem here? this is pretty slow... master_printf("Energy decaying too slowly: from %g to %g (%g)\n", last_energy, new_energy, new_energy/last_energy); return 0; } else { master_printf("Got newE/oldE of %g\n", new_energy/last_energy); } total_energy_check_time += deltaT; } } return 1;}int test_pml_splitting(double eps(const vec &), int splitting, const char *mydirname) { double a = 10.0; volume v = vol3d(1.5, 1.0, 1.2, a); structure s1(v, eps, pml(0.3)); structure s(v, eps, pml(0.3), identity(), splitting); s.set_output_directory(mydirname); s1.set_output_directory(mydirname); master_printf("Testing pml while splitting into %d chunks...\n", splitting); fields f(&s); f.add_point_source(Ez, 0.8, 1.6, 0.0, 4.0, vec(1.099,0.499,0.501), 1.0); fields f1(&s1); f1.add_point_source(Ez, 0.8, 1.6, 0.0, 4.0, vec(1.099,0.499,0.501), 1.0); const double ttot = 31.0; double next_energy_time = 10.0; while (f.time() < ttot) { f.step(); f1.step(); if (!approx_point(f, f1, vec(0.5 , 0.01 , 1.0 ))) return 0; if (!approx_point(f, f1, vec(0.46 , 0.33 , 0.33))) return 0; if (!approx_point(f, f1, vec(1.0 , 1.0 , 0.33))) return 0; if (!approx_point(f, f1, vec(1.3 , 0.3 , 0.15))) return 0; if (f.time() > next_energy_time) { if (!compare(f.total_energy(), f1.total_energy(), " total energy")) return 0; next_energy_time += 10.0; } } return 1;}int main(int argc, char **argv) { initialize mpi(argc, argv); quiet = true; const char *mydirname = "three_d-out"; trash_output_directory(mydirname); master_printf("Testing 3D...\n"); if (!test_pml(one, mydirname)) abort("error in test_pml vacuum\n"); for (int s=2;s<7;s++) if (!test_periodic(targets, s, mydirname)) abort("error in test_periodic targets\n"); for (int s=2;s<8;s++) if (!test_metal(one, s, mydirname)) abort("error in test_metal vacuum\n"); for (int s=2;s<4;s++) if (!test_pml_splitting(one, s, mydirname)) abort("error in test_pml_splitting vacuum\n"); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -