📄 dhp.java
字号:
/**
* Parses a given list of options. Valid options are:<p>
*
* -N required number of rules <br>
* The required number of rules (default: 10). <p>
*
* -T type of metric by which to sort rules <br>
* 0 = confidence . <p>
*
* -C minimum metric score of a rule <br>
* The minimum confidence of a rule (default: 0.9). <p>
*
* -D delta for minimum support <br>
* The delta by which the minimum support is decreased in
* each iteration (default: 0.05).
*
* -U upper bound for minimum support <br>
* The upper bound for minimum support. Don't explicitly look for
* rules with more than this level of support. <p>
*
* -M lower bound for minimum support <br>
* The lower bound for the minimum support (default = 0.1). <p>
*
* -S significance level <br>
* If used, rules are tested for significance at
* the given level. Slower (default = no significance testing). <p>
*
* -I <br>
* If set the itemsets found are also output (default = no). <p>
*
* -V <br>
* If set then progress is reported iteratively during execution. <p>
*
* -R <br>
* If set then columns that contain all missing values are removed from
* the data. <p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception{
resetOptions();
String numRulesString = Utils.getOption('N', options),
minConfidenceString = Utils.getOption('C', options),
deltaString = Utils.getOption('D', options),
maxSupportString = Utils.getOption('U', options),
minSupportString = Utils.getOption('M', options),
significanceLevelString = Utils.getOption('S', options);
String metricTypeString = Utils.getOption('T', options);
if (metricTypeString.length() != 0) {
setMetricType(new SelectedTag(Integer.parseInt(metricTypeString),
TAGS_SELECTION));
}
if (numRulesString.length() != 0) {
m_numRules = Integer.parseInt(numRulesString);
}
if (minConfidenceString.length() != 0) {
m_minMetric = (new Double(minConfidenceString)).doubleValue();
}
if (deltaString.length() != 0) {
m_delta = (new Double(deltaString)).doubleValue();
}
if (maxSupportString.length() != 0) {
setUpperBoundMinSupport((new Double(maxSupportString)).doubleValue());
}
if (minSupportString.length() != 0) {
m_lowerBoundMinSupport = (new Double(minSupportString)).doubleValue();
}
if (significanceLevelString.length() != 0) {
m_significanceLevel = (new Double(significanceLevelString)).doubleValue();
}
m_outputItemSets = Utils.getFlag('I', options);
m_verbose = Utils.getFlag('V', options);
setRemoveAllMissingCols(Utils.getFlag('R', options));
}
/**
* Gets the current settings of the DHP object.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [16];
int current = 0;
if (m_outputItemSets) {
options[current++] = "-I";
}
if (getRemoveAllMissingCols()) {
options[current++] = "-R";
}
options[current++] = "-N"; options[current++] = "" + m_numRules;
options[current++] = "-T"; options[current++] = "" + m_metricType;
options[current++] = "-C"; options[current++] = "" + m_minMetric;
options[current++] = "-D"; options[current++] = "" + m_delta;
options[current++] = "-U"; options[current++] = ""+m_upperBoundMinSupport;
options[current++] = "-M"; options[current++] = ""+m_lowerBoundMinSupport;
options[current++] = "-S"; options[current++] = "" + m_significanceLevel;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Outputs the size of all the generated sets of itemsets and the rules.
*/
public String toString() {
pmmlDocument(0);
StringBuffer text = new StringBuffer();
if (m_Ls.size() <= 1)
return "\nNo large itemsets and rules found!\n";
text.append("\nDHP\n=======\n\n");
text.append("Minimum support: "
+ Utils.doubleToString(m_minSupport,2) + '\n');
text.append("Minimum metric <");
text.append("confidence>: ");
text.append(Utils.doubleToString(m_minMetric,2)+'\n');
if (m_significanceLevel != -1)
text.append("Significance level: "+
Utils.doubleToString(m_significanceLevel,2)+'\n');
text.append("Number of cycles performed: " + m_cycles+'\n');
text.append("\nGenerated sets of large itemsets:\n");
for (int i = 0; i < m_Ls.size(); i++) {
text.append("\nSize of set of large itemsets L("+(i+1)+"): "+
((FastVector)m_Ls.elementAt(i)).size()+'\n');
if (m_outputItemSets) {
text.append("\nLarge Itemsets L("+(i+1)+"):\n");
for (int j = 0; j < ((FastVector)m_Ls.elementAt(i)).size(); j++)
text.append(((ItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)).
toString(m_instances)+"\n");
}
}
text.append("\nBest rules found:\n\n");
for (int i = 0; i < m_allTheRules[0].size(); i++) {
text.append(Utils.doubleToString((double)i+1,
(int)(Math.log(m_numRules)/Math.log(10)+1),0)+
". " + ((ItemSet)m_allTheRules[0].elementAt(i)).
toString(m_instances)
+ " ==> " + ((ItemSet)m_allTheRules[1].elementAt(i)).
toString(m_instances) +" conf:("+
Utils.doubleToString(((Double)m_allTheRules[2].
elementAt(i)).doubleValue(),2)+")");
text.append('\n');
}
return text.toString();
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String removeAllMissingColsTipText() {
return "Remove columns with all missing values.";
}
/**
* Remove columns containing all missing values.
* @param r true if cols are to be removed.
*/
public void setRemoveAllMissingCols(boolean r) {
m_removeMissingCols = r;
}
/**
* Returns whether columns containing all missing values are to be removed
* @return true if columns are to be removed.
*/
public boolean getRemoveAllMissingCols() {
return m_removeMissingCols;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String upperBoundMinSupportTipText() {
return "Upper bound for minimum support. Start iteratively decreasing "
+"minimum support from this value.";
}
/**
* Get the value of upperBoundMinSupport.
*
* @return Value of upperBoundMinSupport.
*/
public double getUpperBoundMinSupport() {
return m_upperBoundMinSupport;
}
/**
* Set the value of upperBoundMinSupport.
*
* @param v Value to assign to upperBoundMinSupport.
*/
public void setUpperBoundMinSupport(double v) {
m_upperBoundMinSupport = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String lowerBoundMinSupportTipText() {
return "Lower bound for minimum support.";
}
/**
* Get the value of lowerBoundMinSupport.
*
* @return Value of lowerBoundMinSupport.
*/
public double getLowerBoundMinSupport() {
return m_lowerBoundMinSupport;
}
/**
* Set the value of lowerBoundMinSupport.
*
* @param v Value to assign to lowerBoundMinSupport.
*/
public void setLowerBoundMinSupport(double v) {
m_lowerBoundMinSupport = v;
}
/**
* Get the metric type
*
* @return the type of metric to use for ranking rules
*/
public SelectedTag getMetricType() {
return new SelectedTag(m_metricType, TAGS_SELECTION);
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String metricTypeTipText() {
return "Set the type of metric by which to rank rules. Confidence is "
+"the proportion of the examples covered by the premise that are also "
+"covered by the consequence.";
}
/**
* Set the metric type for ranking rules
*
* @param d the type of metric
*/
public void setMetricType (SelectedTag d) {
if (d.getTags() == TAGS_SELECTION) {
m_metricType = d.getSelectedTag().getID();
}
if (m_significanceLevel != -1 && m_metricType != CONFIDENCE) {
m_metricType = CONFIDENCE;
}
if (m_metricType == CONFIDENCE) {
setMinMetric(0.9);
}
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String minMetricTipText() {
return "Minimum metric score. Consider only rules with scores higher than "
+"this value.";
}
/**
* Get the value of minConfidence.
*
* @return Value of minConfidence.
*/
public double getMinMetric() {
return m_minMetric;
}
/**
* Set the value of minConfidence.
*
* @param v Value to assign to minConfidence.
*/
public void setMinMetric(double v) {
m_minMetric = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String numRulesTipText() {
return "Number of rules to find.";
}
/**
* Get the value of numRules.
*
* @return Value of numRules.
*/
public int getNumRules() {
return m_numRules;
}
/**
* Set the value of numRules.
*
* @param v Value to assign to numRules.
*/
public void setNumRules(int v) {
m_numRules = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String deltaTipText() {
return "Iteratively decrease support by this factor. Reduces support "
+"until min support is reached or required number of rules has been "
+"generated.";
}
/**
* Get the value of delta.
*
* @return Value of delta.
*/
public double getDelta() {
return m_delta;
}
/**
* Set the value of delta.
*
* @param v Value to assign to delta.
*/
public void setDelta(double v) {
m_delta = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the gui
*/
public String significanceLevelTipText() {
return "Significance level. Significance test (confidence metric only).";
}
/**
* Get the value of significanceLevel.
*
* @return Value of significanceLevel.
*/
public double getSignificanceLevel() {
return m_significanceLevel;
}
/**
* Set the value of significanceLevel.
*
* @param v Value to assign to significanceLevel.
*/
public void setSignificanceLevel(double v) {
m_significanceLevel = v;
}
/**
* Method that finds all large itemsets for the given set of instances.
*
* @param the instances to be used
* @exception Exception if an attribute is numeric
*/
private void findLargeItemSets(Instances instances) throws Exception {
FastVector kMinusOneSets, kSets;
Hashtable hashtable;
int necSupport, necMaxSupport,i = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -