📄 normalizationfilter.java
字号:
/**
*
* AgentAcademy - an open source Data Mining framework for
* training intelligent agents
*
* Copyright (C) 2001-2003 AA Consortium.
*
* This library is open source software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation;
* either version 2.0 of the License, or (at your option) any later
* version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
package org.agentacademy.modules.dataminer.filters;
/**
* <p>Title: The Data Miner prototype</p>
* <p>Description: A prototype for the DataMiner (DM), the Agent Academy (AA) module responsible for performing data mining on the contents of the Agent Use Repository (AUR). The extracted knowledge is to be sent back to the AUR in the form of a PMML document.</p>
* <p>Copyright: Copyright (c) 2002</p>
* <p>Company: CERTH</p>
* @author asymeon
* @version 0.3
*/
import org.agentacademy.modules.dataminer.core.Instance;
import org.agentacademy.modules.dataminer.core.Instances;
import org.agentacademy.modules.dataminer.core.SparseInstance;
import org.agentacademy.modules.dataminer.core.Utils;
import org.apache.log4j.Logger;
/**
* Normalizes all numeric values in the given dataset. The resulting
* values are in [0,1] for the data used to compute the normalization
* intervals.
*
*/
public class NormalizationFilter extends Filter {
public static Logger log = Logger.getLogger(NormalizationFilter.class);
/** The minimum values for numeric attributes. */
private double [] m_MinArray;
/** The maximum values for numeric attributes. */
private double [] m_MaxArray;
/**
* Sets the format of the input instances.
*
* @param instanceInfo an Instances object containing the input
* instance structure (any instances contained in the object are
* ignored - only the structure is required).
* @return true if the outputFormat may be collected immediately
* @exception Exception if the input format can't be set
* successfully
*/
public boolean setInputFormat(Instances instanceInfo)
throws Exception {
super.setInputFormat(instanceInfo);
setOutputFormat(instanceInfo);
m_MinArray = m_MaxArray = null;
return true;
}
/**
* Input an instance for filtering. Filter requires all
* training instances be read before producing output.
*
* @param instance the input instance
* @return true if the filtered instance may now be
* collected with output().
* @exception IllegalStateException if no input format has been set.
*/
public boolean input(Instance instance) {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (m_NewBatch) {
resetQueue();
m_NewBatch = false;
}
if (m_MinArray == null) {
bufferInput(instance);
return false;
} else {
convertInstance(instance);
return true;
}
}
/**
* Signify that this batch of input to the filter is finished.
* If the filter requires all instances prior to filtering,
* output() may now be called to retrieve the filtered instances.
*
* @return true if there are instances pending output
* @exception IllegalStateException if no input structure has been defined
*/
public boolean batchFinished() {
if (getInputFormat() == null) {
throw new IllegalStateException("No input instance format defined");
}
if (m_MinArray == null) {
Instances input = getInputFormat();
// Compute minimums and maximums
m_MinArray = new double[input.numAttributes()];
m_MaxArray = new double[input.numAttributes()];
for (int i = 0; i < input.numAttributes(); i++) {
m_MinArray[i] = Double.NaN;
}
for (int j = 0; j < input.numInstances(); j++) {
double[] value = input.instance(j).toDoubleArray();
for (int i = 0; i < input.numAttributes(); i++) {
if (input.attribute(i).isNumeric()) {
if (!Instance.isMissingValue(value[i])) {
if (Double.isNaN(m_MinArray[i])) {
m_MinArray[i] = m_MaxArray[i] = value[i];
} else {
if (value[i] < m_MinArray[i]) {
m_MinArray[i] = value[i];
}
if (value[i] > m_MaxArray[i]) {
m_MaxArray[i] = value[i];
}
}
}
}
}
}
// Convert pending input instances
for(int i = 0; i < input.numInstances(); i++) {
convertInstance(input.instance(i));
}
}
// Free memory
flushInput();
m_NewBatch = true;
return (numPendingOutput() != 0);
}
/**
* Convert a single instance over. The converted instance is
* added to the end of the output queue.
*
* @param instance the instance to convert
*/
private void convertInstance(Instance instance) {
Instance inst = null;
if (instance instanceof SparseInstance) {
double[] newVals = new double[instance.numAttributes()];
int[] newIndices = new int[instance.numAttributes()];
double[] vals = instance.toDoubleArray();
int ind = 0;
for (int j = 0; j < instance.numAttributes(); j++) {
double value;
if (instance.attribute(j).isNumeric() &&
(!Instance.isMissingValue(vals[j]))) {
if (Double.isNaN(m_MinArray[j]) ||
(m_MaxArray[j] == m_MinArray[j])) {
value = 0;
} else {
value = (vals[j] - m_MinArray[j]) /
(m_MaxArray[j] - m_MinArray[j]);
}
if (value != 0.0) {
newVals[ind] = value;
newIndices[ind] = j;
ind++;
}
} else {
value = vals[j];
if (value != 0.0) {
newVals[ind] = value;
newIndices[ind] = j;
ind++;
}
}
}
double[] tempVals = new double[ind];
int[] tempInd = new int[ind];
System.arraycopy(newVals, 0, tempVals, 0, ind);
System.arraycopy(newIndices, 0, tempInd, 0, ind);
inst = new SparseInstance(instance.weight(), tempVals, tempInd,
instance.numAttributes());
} else {
double[] vals = instance.toDoubleArray();
for (int j = 0; j < getInputFormat().numAttributes(); j++) {
if (instance.attribute(j).isNumeric() &&
(!Instance.isMissingValue(vals[j]))) {
if (Double.isNaN(m_MinArray[j]) ||
(m_MaxArray[j] == m_MinArray[j])) {
vals[j] = 0;
} else {
vals[j] = (vals[j] - m_MinArray[j]) /
(m_MaxArray[j] - m_MinArray[j]);
}
}
}
inst = new Instance(instance.weight(), vals);
}
inst.setDataset(instance.dataset());
push(inst);
}
/**
* Main method for testing this class.
*
* @param argv should contain arguments to the filter:
* use -h for help
*/
public static void main(String [] argv) {
try {
if (Utils.getFlag('b', argv)) {
Filter.batchFilterFile(new NormalizationFilter(), argv);
} else {
Filter.filterFile(new NormalizationFilter(), argv);
}
} catch (Exception ex) {
log.error(ex.getMessage());
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -