📄 holdoutsubsetevaluator.java
字号:
/**
*
* AgentAcademy - an open source Data Mining framework for
* training intelligent agents
*
* Copyright (C) 2001-2003 AA Consortium.
*
* This library is open source software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation;
* either version 2.0 of the License, or (at your option) any later
* version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
package org.agentacademy.modules.dataminer.attributeSelection;
import java.util.BitSet;
import org.agentacademy.modules.dataminer.core.Instance;
import org.agentacademy.modules.dataminer.core.Instances;
/**
* Abstract attribute subset evaluator capable of evaluating subsets with
* respect to a data set that is distinct from that used to initialize/
* train the subset evaluator.
*
* @author Mark Hall (mhall@cs.waikato.ac.nz)
* @version $Revision: 1.2 $
*/
public abstract class HoldOutSubsetEvaluator extends SubsetEvaluator {
/**
* Evaluates a subset of attributes with respect to a set of instances.
* @param subset a bitset representing the attribute subset to be
* evaluated
* @param holdOut a set of instances (possibly seperate and distinct
* from those use to build/train the evaluator) with which to
* evaluate the merit of the subset
* @return the "merit" of the subset on the holdOut data
* @exception Exception if the subset cannot be evaluated
*/
public abstract double evaluateSubset(BitSet subset, Instances holdOut)
throws Exception;
/**
* Evaluates a subset of attributes with respect to a single instance.
* @param subset a bitset representing the attribute subset to be
* evaluated
* @param holdOut a single instance (possibly not one of those used to
* build/train the evaluator) with which to evaluate the merit of the subset
* @param retrain true if the classifier should be retrained with respect
* to the new subset before testing on the holdOut instance.
* @return the "merit" of the subset on the holdOut instance
* @exception Exception if the subset cannot be evaluated
*/
public abstract double evaluateSubset(BitSet subset,
Instance holdOut,
boolean retrain)
throws Exception;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -