⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrices.c

📁 麻省理工的计算光子晶体的程序
💻 C
字号:
/* Copyright (C) 1999, 2000, 2001, 2002, Massachusetts Institute of Technology. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include <stdlib.h>#include <stdio.h>#include "../config.h"#include <check.h>#include "matrices.h"/* Basic operations: allocation, deallocation, etcetera. */evectmatrix create_evectmatrix(int N, int c, int p,			       int localN, int Nstart, int allocN){     evectmatrix X;      CHECK(localN <= N && allocN >= localN && Nstart < N,	   "invalid N arguments");         X.N = N;     X.localN = localN;     X.Nstart = Nstart;     X.allocN = allocN;     X.c = c;          X.n = localN * c;     X.alloc_p = X.p = p;          if (allocN > 0) {	  CHK_MALLOC(X.data, scalar, allocN * c * p);     }     else	  X.data = NULL;     return X;}void destroy_evectmatrix(evectmatrix X){     free(X.data);}sqmatrix create_sqmatrix(int p){     sqmatrix X;     X.alloc_p = X.p = p;     if (p > 0) {	  CHK_MALLOC(X.data, scalar, p * p);     }     else	  X.data = (scalar*) NULL;     return X;}void destroy_sqmatrix(sqmatrix X){     free(X.data);}/***********************************************************************//* a few general matrix operations for diagonal matrices; these   will be used both by evectmatrix and sqmatrix routines: *//* compute diag = diagonal elements of Xt * Y, where X and Y are n x p. */void matrix_XtY_diag(scalar *X, scalar *Y, int n, int p, scalar *diag){     int i, j;     for (j = 0; j < p; ++j) {	  ASSIGN_ZERO(diag[j]);     }          for (i = 0; i < n; ++i)	  for (j = 0; j < p; ++j) {	       ACCUMULATE_SUM_CONJ_MULT(diag[j], X[i*p+j], Y[i*p+j]);	  }}/* compute diag = diagonal elements of Re[Xt * Y], where X and Y are n x p. */void matrix_XtY_diag_real(scalar *X, scalar *Y, int n, int p, real *diag){     int i, j;     for (j = 0; j < p; ++j) {	  diag[j] = 0;     }          for (i = 0; i < n; ++i)	  for (j = 0; j < p; ++j) {	       diag[j] += (SCALAR_RE(X[i*p+j]) * SCALAR_RE(Y[i*p+j]) + 			   SCALAR_IM(X[i*p+j]) * SCALAR_IM(Y[i*p+j]));	  }}/* compute diag = diagonal elements of Xt * X, where X is n x p. */void matrix_XtX_diag_real(scalar *X, int n, int p, real *diag){     int i, j;     for (j = 0; j < p; ++j) {	  diag[j] = 0;     }          for (i = 0; i < n; ++i)	  for (j = 0; j < p; ++j) {	       ACCUMULATE_SUM_SQ(diag[j], X[i*p+j]);	  }}/* compute X += a * Y * diag(diag), where X and Y are n x p */void matrix_XpaY_diag(scalar *X, real a, scalar *Y, 		      scalar *diag, int n, int p){     int i, j;     for (i = 0; i < n; ++i) {	  for (j = 0; j < p; ++j) {	       scalar c;	       ASSIGN_MULT(c, Y[i*p+j], diag[j]);	       ASSIGN_SCALAR(X[i*p+j],			     SCALAR_RE(X[i*p+j]) + a * SCALAR_RE(c),			     SCALAR_IM(X[i*p+j]) + a * SCALAR_IM(c));	  }     }}/* compute X += a * Y * diag(diag), where X and Y are n x p and diag is real */void matrix_XpaY_diag_real(scalar *X, real a, scalar *Y, 			   real *diag, int n, int p){     int i, j;     for (i = 0; i < n; ++i) {	  for (j = 0; j < p; ++j) {	       real d = a * diag[j];	       ASSIGN_SCALAR(X[i*p+j],			     SCALAR_RE(X[i*p+j]) + d * SCALAR_RE(Y[i*p+j]),			     SCALAR_IM(X[i*p+j]) + d * SCALAR_IM(Y[i*p+j]));	  }     }}/* compute X = X * diag1 + Y * diag2, where X and Y are n x p and    diag1 and diag2 are real diagonal matrices */void matrix_X_diag_real_pY_diag_real(scalar *X, real *diag1,				     scalar *Y, real *diag2, int n, int p){          int i, j;	  for (i = 0; i < n; ++i) {	       for (j = 0; j < p; ++j) {		    real d1 = diag1[j], d2 = diag2[j];		    ASSIGN_SCALAR(X[i*p+j],				  d1 * SCALAR_RE(X[i*p+j]) + 				  d2 * SCALAR_RE(Y[i*p+j]),				  d1 * SCALAR_IM(X[i*p+j]) +				  d2 * SCALAR_IM(Y[i*p+j]));	       }	  }}/* compute Re [ trace A * diag(diag) ], where A is p by p. */real matrix_re_trace_A_diag_real(scalar *A, real *diag, int p){     real trace = 0.0;     int i;     for (i = 0; i < p; ++i)	  trace += SCALAR_RE(A[i*(p+1)]) * diag[i];     return trace;}scalar matrix_diag_trace(scalar *diag, int p){     scalar trace = SCALAR_INIT_ZERO;     int i;     for (i = 0; i < p; ++i) {	  ACCUMULATE_SUM(trace, diag[i]);     }     return trace;}real matrix_diag_real_trace(real *diag, int p){     real trace = 0.0;     int i;     for (i = 0; i < p; ++i)	  trace += diag[i];     return trace;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -