⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blastest.c

📁 麻省理工的计算光子晶体的程序
💻 C
字号:
/* Copyright (C) 1999, 2000, 2001, 2002, Massachusetts Institute of Technology. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include <stdio.h>#include <stdlib.h>#include <math.h>#include "../src/config.h"#include <blasglue.h>#include <check.h>extern void debug_check_memory_leaks(void);  void printmat(scalar *A, int m, int n){  int i, j;  for (i = 0; i < m; ++i) {    for (j = 0; j < n; ++j) {#ifdef SCALAR_COMPLEX      printf("  (%6.3f,%6.3f)", A[i*n + j].re, A[i*n + j].im);#else      printf("  %6.3f", A[i*n + j]);#endif    }    printf("\n");  }}void printmat_matlab(scalar *A, int m, int n){  int i, j;  printf("[");  for (i = 0; i < m; ++i) {    for (j = 0; j < n; ++j) {#ifdef SCALAR_COMPLEX         printf("  %g+%gi", A[i*n + j].re, A[i*n + j].im);#else         printf("  %g", A[i*n + j]);#endif    }    printf(";\n");  }  printf("]\n");}int main(void){  const int N = 4;  int i,j;#ifndef SCALAR_COMPLEX  scalar A[] = { 3.3, 6.2, 7.1, 9.1,                 -2.3, 3.6, 0.3, 9.7,                 6.7, -0.1, 1.1, 4.8,                 8.4, 7.7, 5.9, -1.8 };  scalar B[] = { 1.1, 2.2, 3.3, 4.4,		 8.8, 7.7, 6.6, 5.5,		 6.1, 8.2, 9.7, 3.6,		 6.3, 2.9, 5.5, 8.1 };#else  scalar A[] = { {3.3, 6.2} , {7.1, 9.1}, {2.3, 8.2}, {-3.2, 6.6},		 {-2.3, 3.6}, {0.3, 9.7}, {1.9,-4.9}, {7.1, 7.1},		 {6.7, -0.1}, {1.1, 4.8}, {-9.7, 3.7}, {-0.01, -0.2},		 {8.4, 7.7}, {5.9, -1.8}, {8.8, 9.9}, {0.0, 0.1} };  scalar B[] = { {1.1, 2.2}, {3.3, 4.4}, {1.2, 2.3}, {3.4, 4.5},		 {8.8, 7.7}, {6.6, 5.5}, {3.5, 7.2}, {-0.3, 6.1},		 {6.1, 8.2}, {9.7, 3.6}, {-5.1, 6.1}, {2.3, 8.1},		 {6.3, 2.9}, {5.5, 8.1}, {8.5, 6.7}, {9.0, 2.4} };#endif  scalar C[16], D[16], E[16];  real eigvals[4], wrk[20];  printf("A = "); printmat_matlab(A,N,N);  printf("B = "); printmat_matlab(B,N,N);  blasglue_gemm('N', 'N', N, N, N, 1.0, A, N, B, N, 0.0, C, N);  printf("\nC = A * B\n");  printmat(C,N,N);  blasglue_gemm('N', 'N', N, N, N, 1.0, C, N, B, N, 0.0, D, N);  printf("\nC * B\n");  printmat(D,N,N);  blasglue_herk('U', 'C', N, N, 1.0, A, N, 0.0, D, N);  /* Now, copy the conjugate of the upper half     onto the lower half of D */  for (i = 0; i < N; ++i)    for (j = i + 1; j < N; ++j) {      ASSIGN_CONJ(D[j * N + i], D[i * N + j]);    }  printf("\nD = A' * A\n");  printmat(D,N,N);  lapackglue_potrf('U', N, D, N);  lapackglue_potri('U', N, D, N);  /* Now, copy the conjugate of the upper half     onto the lower half of D */  for (i = 0; i < N; ++i)    for (j = i + 1; j < N; ++j) {      ASSIGN_CONJ(D[j * N + i], D[i * N + j]);    }  printf("\ninverse(D)\n");  printmat(D,N,N);  /* D = At * A, again */  blasglue_herk('U', 'C', N, N, 1.0, A, N, 0.0, D, N);  /* Compute eigenvectors and eigenvalues: */  lapackglue_heev('V', 'U', N, D, N, eigvals, E, 16, wrk);  /* Choose a deterministic phase for each row/eigenvector: */  for (i = 0; i < N; ++i) {       scalar phase;       real len;       for (j = 0; (len = sqrt(SCALAR_NORMSQR(D[i*N + j]))) < 1e-6; ++j)	    ;       /* phase to make D[i*N+j] purely real: */       ASSIGN_SCALAR(phase, SCALAR_RE(D[i*N+j])/len, -SCALAR_IM(D[i*N+j])/len);       ASSIGN_MULT(D[i*N+j], D[i*N+j], phase);       if (SCALAR_RE(D[i*N+j]) < 0) { /* pick deterministic (positive) sign */	    ASSIGN_SCALAR(phase, -SCALAR_RE(phase), -SCALAR_IM(phase));	    ASSIGN_SCALAR(D[i*N+j], -SCALAR_RE(D[i*N+j]),-SCALAR_IM(D[i*N+j]));       }       for (j = j + 1; j < N; ++j)	    ASSIGN_MULT(D[i*N + j], D[i*N + j], phase);  }  printf("\n[v,d] = eig(D);\n");  printf("\ndiag(d)\n  ");  for (i = 0; i < 4; ++i) printf("  %6.3f", eigvals[i]);  printf("\nv'\n");  printmat(D,N,N);  blasglue_gemm('C', 'N', N, N, N, 1.0, D, N, D, N, 0.0, C, N);  printf("\nv * v'\n");  printmat(C,N,N);  /* Compute E = diag(sqrt(eigenvals)) * D; i.e. the rows of E     become the rows of D times sqrt(corresponding eigenvalue) */  for (i = 0; i < N; ++i) {    CHECK(eigvals[i] > 0, "non-positive eigenvalue");        blasglue_copy(N, D + i*N, 1, E + i*N, 1);    blasglue_rscal(N, sqrt(eigvals[i]), E + i*N, 1);  }  /* compute C = adjoint(D) * E == sqrt (At * A) */  blasglue_gemm('C', 'N', N, N, N, 1.0, D, N, E, N, 0.0, C, N);  printf("\nsqrtm(D)\n");  printmat(C,N,N);  blasglue_gemm('C', 'N', N, N, N, 1.0, E, N, E, N, 0.0, C, N);  printf("\nsqrtm(D) * sqrtm(D)\n");  printmat(C,N,N);  debug_check_memory_leaks();  return EXIT_SUCCESS;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -