📄 fixduplicates.m
字号:
function net = fixduplicates(net, x, y)
% FIXDUPLICATES
%
% Ensure that identical support vector of each class have identical Lagrange
% multipliers.
%
% net = fixduplicates(net, x, y)
%
% where x and y are the training data. The strip or compact methods must not
% previously have been applied to this network.
%
% File : @svc/fixduplicates.m
%
% Date : Tuesday 12th September 2000
%
% Author : Dr Gavin C. Cawley
%
% Description : Part of an object-oriented implementation of Vapnik's Support
% Vector Machine, as described in [1].
%
% References : [1] V.N. Vapnik,
% "The Nature of Statistical Learning Theory",
% Springer-Verlag, New York, ISBN 0-387-94559-8,
% 1995.
%
% History : 07/07/2000 - v1.00
% 12/09/2000 - v1.01 minor improvements to comments and help
% message
% 16/09/2000 - v1.10 fixed a bug requiring the training data
% to be provided as parameters
%
% Copyright : (c) Dr Gavin C. Cawley, September 2000
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
[foo, i, j] = unique(x, 'rows');
for k = unique(j)'
idx1 = find(j == k);
idx2 = find(y(idx1) > 0);
if ~isempty(idx2)
net.w(idx1(idx2)) = mean(net.w(idx1(idx2)));
end
idx2 = find(y(idx1) < 0);
if ~isempty(idx2)
net.w(idx1(idx2)) = mean(net.w(idx1(idx2)));
end
end
% bye bye...
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -