📄 stats.c
字号:
#include <stdio.h>#include <math.h>#include "util.h"#include "vpr_types.h"#include "globals.h"#include "rr_graph_area.h"#include "segment_stats.h"#include "stats.h"#include "net_delay.h"#include "path_delay.h"/********************** Subroutines local to this module *********************/static void load_channel_occupancies (int **chanx_occ, int **chany_occ); static void get_num_bends_and_length (int inet, int *bends, int *length, int *segments); static void get_length_and_bends_stats (void);static void get_channel_occupancy_stats (void);/************************* Subroutine definitions ****************************/void routing_stats (boolean full_stats, enum e_route_type route_type, int num_switch, t_segment_inf *segment_inf, int num_segment, float R_minW_nmos, float R_minW_pmos, boolean timing_analysis_enabled, float **net_slack, float **net_delay) {/* Prints out various statistics about the current routing. Both a routing * * and an rr_graph must exist when you call this routine. */ float T_crit; get_length_and_bends_stats (); get_channel_occupancy_stats (); if (route_type == DETAILED) { count_routing_transistors (num_switch, R_minW_nmos, R_minW_pmos); get_segment_usage_stats (num_segment, segment_inf); if (timing_analysis_enabled) { load_net_delay_from_routing (net_delay); #ifdef PRINT_NET_DELAYS print_net_delay (net_delay, "net_delay.echo"); #endif load_timing_graph_net_delays (net_delay); T_crit = load_net_slack (net_slack, 0);#ifdef PRINT_TIMING_GRAPH print_timing_graph ("timing_graph.echo"); #endif#ifdef PRINT_NET_SLACKS print_net_slack ("net_slack.echo", net_slack);#endif printf ("\n"); print_critical_path ("critical_path.echo"); printf ("Critical Path: %g (s)\n", T_crit); } } if (full_stats == TRUE) print_wirelen_prob_dist ();}static void get_length_and_bends_stats (void) {/* Figures out maximum, minimum and average number of bends and net length * * in the routing. */ int inet, bends, total_bends, max_bends; int length, total_length, max_length; int segments, total_segments, max_segments; float av_bends, av_length, av_segments; max_bends = 0; total_bends = 0; max_length = 0; total_length = 0; max_segments = 0; total_segments = 0; for (inet=0;inet<num_nets;inet++) { if (is_global[inet] == FALSE) { /* Globals don't count. */ get_num_bends_and_length (inet, &bends, &length, &segments); total_bends += bends; max_bends = max (bends, max_bends); total_length += length; max_length = max (length, max_length); total_segments += segments; max_segments = max (segments, max_segments); } } av_bends = (float) total_bends / (float) (num_nets - num_globals); printf ("\nAverage number of bends per net: %#g Maximum # of bends: %d\n\n", av_bends, max_bends); av_length = (float) total_length / (float) (num_nets - num_globals); printf ("Wirelength results (all in units of 1 clb segments):\n"); printf ("\tTotal wirelength: %d Average net length: %#g\n", total_length, av_length); printf ("\tMaximum net length: %d\n\n", max_length); av_segments = (float) total_segments / (float) (num_nets - num_globals); printf ("Wirelength results in terms of physical segments:\n"); printf ("\tTotal wiring segments used: %d Av. wire segments per net: " "%#g\n", total_segments, av_segments); printf ("\tMaximum segments used by a net: %d\n\n", max_segments);}static void get_channel_occupancy_stats (void) {/* Determines how many tracks are used in each channel. */ int i, j, max_occ, total_x, total_y; float av_occ; int **chanx_occ; /* [1..nx][0..ny] */ int **chany_occ; /* [0..nx][1..ny] */ chanx_occ = (int **) alloc_matrix (1, nx, 0, ny, sizeof(int)); chany_occ = (int **) alloc_matrix (0, nx, 1, ny, sizeof(int)); load_channel_occupancies (chanx_occ, chany_occ); printf("\nX - Directed channels:\n\n"); printf("j\tmax occ\tav_occ\t\tcapacity\n"); total_x = 0; for (j=0;j<=ny;j++) { total_x += chan_width_x[j]; av_occ = 0.; max_occ = -1; for (i=1;i<=nx;i++) { max_occ = max (chanx_occ[i][j], max_occ); av_occ += chanx_occ[i][j]; } av_occ /= nx; printf("%d\t%d\t%-#9g\t%d\n", j, max_occ, av_occ, chan_width_x[j]); } printf("\nY - Directed channels:\n\n"); printf("i\tmax occ\tav_occ\t\tcapacity\n"); total_y = 0; for (i=0;i<=nx;i++) { total_y += chan_width_y[i]; av_occ = 0.; max_occ = -1; for (j=1;j<=ny;j++) { max_occ = max (chany_occ[i][j], max_occ); av_occ += chany_occ[i][j]; } av_occ /= ny; printf("%d\t%d\t%-#9g\t%d\n", i, max_occ, av_occ, chan_width_y[i]); } printf("\nTotal Tracks in X-direction: %d in Y-direction: %d\n\n", total_x, total_y); free_matrix (chanx_occ, 1, nx, 0, sizeof(int)); free_matrix (chany_occ, 0, nx, 1, sizeof(int));}static void load_channel_occupancies (int **chanx_occ, int **chany_occ) {/* Loads the two arrays passed in with the total occupancy at each of the * * channel segments in the FPGA. */ int i, j, inode, inet; struct s_trace *tptr; t_rr_type rr_type;/* First set the occupancy of everything to zero. */ for (i=1;i<=nx;i++) for (j=0;j<=ny;j++) chanx_occ[i][j] = 0; for (i=0;i<=nx;i++) for (j=1;j<=ny;j++) chany_occ[i][j] = 0;/* Now go through each net and count the tracks and pins used everywhere */ for (inet=0;inet<num_nets;inet++) { if (is_global[inet]) /* Skip global nets. */ continue; tptr = trace_head[inet]; while (tptr != NULL) { inode = tptr->index; rr_type = rr_node[inode].type; if (rr_type == SINK) { tptr = tptr->next; /* Skip next segment. */ if (tptr == NULL) break; } else if (rr_type == CHANX) { j = rr_node[inode].ylow; for (i=rr_node[inode].xlow;i<=rr_node[inode].xhigh;i++) chanx_occ[i][j]++; } else if (rr_type == CHANY) { i = rr_node[inode].xlow; for (j=rr_node[inode].ylow;j<=rr_node[inode].yhigh;j++) chany_occ[i][j]++; } tptr = tptr->next; } }}static void get_num_bends_and_length (int inet, int *bends_ptr, int *len_ptr, int *segments_ptr) {/* Counts and returns the number of bends, wirelength, and number of routing * * resource segments in net inet's routing. */ struct s_trace *tptr, *prevptr; int inode; t_rr_type curr_type, prev_type; int bends, length, segments; bends = 0; length = 0; segments = 0; prevptr = trace_head[inet]; /* Should always be SOURCE. */ if (prevptr == NULL) { printf ("Error in get_num_bends_and_length: net #%d has no traceback.\n", inet); exit (1); } inode = prevptr->index; prev_type = rr_node[inode].type; tptr = prevptr->next; while (tptr != NULL) { inode = tptr->index; curr_type = rr_node[inode].type; if (curr_type == SINK) { /* Starting a new segment */ tptr = tptr->next; /* Link to existing path - don't add to len. */ if (tptr == NULL) break; curr_type = rr_node[tptr->index].type; } else if (curr_type == CHANX || curr_type == CHANY) { segments++; length += 1 + rr_node[inode].xhigh - rr_node[inode].xlow + rr_node[inode].yhigh - rr_node[inode].ylow; if (curr_type != prev_type && (prev_type == CHANX || prev_type == CHANY)) bends++; } prev_type = curr_type; tptr = tptr->next; } *bends_ptr = bends; *len_ptr = length; *segments_ptr = segments;}void print_wirelen_prob_dist (void) { /* Prints out the probability distribution of the wirelength / number * * input pins on a net -- i.e. simulates 2-point net length probability * * distribution. */ float *prob_dist; float norm_fac, two_point_length; int inet, bends, length, segments, index; float av_length; prob_dist = (float *) my_calloc (nx + ny + 3, sizeof (float)); norm_fac = 0.; for (inet=0;inet<num_nets;inet++) { if (is_global[inet] == FALSE) { get_num_bends_and_length (inet, &bends, &length, &segments);/* Assign probability to two integer lengths proportionately -- i.e. * * if two_point_length = 1.9, add 0.9 of the pins to prob_dist[2] and * * only 0.1 to prob_dist[1]. */ two_point_length = (float) length / (float) (net[inet].num_pins - 1); index = (int) two_point_length; prob_dist[index] += (net[inet].num_pins - 1.) * (1 - two_point_length + index); index++; prob_dist[index] += (net[inet].num_pins - 1.) * (1 - index + two_point_length); norm_fac += net[inet].num_pins - 1.; } } /* Normalize so total probability is 1 and print out. */ printf ("\nProbability distribution of 2-pin net lengths:\n\n"); printf ("Length p(Lenth)\n"); av_length = 0; for (index=0;index<nx+ny+3;index++) { prob_dist[index] /= norm_fac; printf("%6d %10.6f\n", index, prob_dist[index]); av_length += prob_dist[index] * index; } printf("\nExpected value of 2-pin net length (R) is: %g\n", av_length); free ((void *) prob_dist);}void print_lambda (void) {/* Finds the average number of input pins used per clb. Does not * * count inputs which are hooked to global nets (i.e. the clock * * when it is marked global). */ int bnum, ipin; int num_inputs_used = 0; int iclass, inet; float lambda; for (bnum=0;bnum<num_blocks;bnum++) { if (block[bnum].type == CLB) { for (ipin=0;ipin<pins_per_clb;ipin++) { iclass = clb_pin_class[ipin]; if (class_inf[iclass].type == RECEIVER) { inet = block[bnum].nets[ipin]; if (inet != OPEN) /* Pin is connected? */ if (is_global[inet] == FALSE) /* Not a global clock */ num_inputs_used++; } } } } lambda = (float) num_inputs_used / (float) num_clbs; printf("Average lambda (input pins used per clb) is: %g\n", lambda);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -