📄 sched.c
字号:
break;
}
timer->expires -= (*p)->expires;
p = &(*p)->next;
}
*p = timer;
restore_flags(flags);
}
int del_timer(struct timer_list * timer)
{
unsigned long flags;
unsigned long expires = 0;
struct timer_list **p;
p = &next_timer;
save_flags(flags);
cli();
while (*p) {
if (*p == timer) {
if ((*p = timer->next) != NULL)
(*p)->expires += timer->expires;
timer->expires += expires;
restore_flags(flags);
return 1;
}
expires += (*p)->expires;
p = &(*p)->next;
}
restore_flags(flags);
return 0;
}
unsigned long timer_active = 0;
struct timer_struct timer_table[32];
/*
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
* imply that avenrun[] is the standard name for this kind of thing.
* Nothing else seems to be standardized: the fractional size etc
* all seem to differ on different machines.
*/
unsigned long avenrun[3] = { 0,0,0 };
/*
* Nr of active tasks - counted in fixed-point numbers
*/
static unsigned long count_active_tasks(void)
{
struct task_struct **p;
unsigned long nr = 0;
for(p = &LAST_TASK; p > &FIRST_TASK; --p)
if (*p && ((*p)->state == TASK_RUNNING ||
(*p)->state == TASK_UNINTERRUPTIBLE ||
(*p)->state == TASK_SWAPPING))
nr += FIXED_1;
return nr;
}
static inline void calc_load(void)
{
unsigned long active_tasks; /* fixed-point */
static int count = LOAD_FREQ;
if (count-- > 0)
return;
count = LOAD_FREQ;
active_tasks = count_active_tasks();
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
}
/*
* this routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
* They were originally developed for SUN and DEC kernels.
* All the kudos should go to Dave for this stuff.
*
* These were ported to Linux by Philip Gladstone.
*/
static void second_overflow(void)
{
long ltemp;
/* last time the cmos clock got updated */
static long last_rtc_update=0;
extern int set_rtc_mmss(unsigned long);
/* Bump the maxerror field */
time_maxerror = (0x70000000-time_maxerror < time_tolerance) ?
0x70000000 : (time_maxerror + time_tolerance);
/* Run the PLL */
if (time_offset < 0) {
ltemp = (-(time_offset+1) >> (SHIFT_KG + time_constant)) + 1;
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
time_offset += (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE);
time_adj = - time_adj;
} else if (time_offset > 0) {
ltemp = ((time_offset-1) >> (SHIFT_KG + time_constant)) + 1;
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
time_offset -= (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE);
} else {
time_adj = 0;
}
time_adj += (time_freq >> (SHIFT_KF + SHIFT_HZ - SHIFT_SCALE))
+ FINETUNE;
/* Handle the leap second stuff */
switch (time_status) {
case TIME_INS:
/* ugly divide should be replaced */
if (xtime.tv_sec % 86400 == 0) {
xtime.tv_sec--; /* !! */
time_status = TIME_OOP;
printk("Clock: inserting leap second 23:59:60 GMT\n");
}
break;
case TIME_DEL:
/* ugly divide should be replaced */
if (xtime.tv_sec % 86400 == 86399) {
xtime.tv_sec++;
time_status = TIME_OK;
printk("Clock: deleting leap second 23:59:59 GMT\n");
}
break;
case TIME_OOP:
time_status = TIME_OK;
break;
}
if (xtime.tv_sec > last_rtc_update + 660)
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
}
/*
* disregard lost ticks for now.. We don't care enough.
*/
static void timer_bh(void * unused)
{
unsigned long mask;
struct timer_struct *tp;
cli();
while (next_timer && next_timer->expires == 0) {
void (*fn)(unsigned long) = next_timer->function;
unsigned long data = next_timer->data;
next_timer = next_timer->next;
sti();
fn(data);
cli();
}
sti();
for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
if (mask > timer_active)
break;
if (!(mask & timer_active))
continue;
if (tp->expires > jiffies)
continue;
timer_active &= ~mask;
tp->fn();
sti();
}
}
/*
* The int argument is really a (struct pt_regs *), in case the
* interrupt wants to know from where it was called. The timer
* irq uses this to decide if it should update the user or system
* times.
*/
static void do_timer(struct pt_regs * regs)
{
unsigned long mask;
struct timer_struct *tp;
long ltemp;
/* Advance the phase, once it gets to one microsecond, then
* advance the tick more.
*/
time_phase += time_adj;
if (time_phase < -FINEUSEC) {
ltemp = -time_phase >> SHIFT_SCALE;
time_phase += ltemp << SHIFT_SCALE;
xtime.tv_usec += tick + time_adjust_step - ltemp;
}
else if (time_phase > FINEUSEC) {
ltemp = time_phase >> SHIFT_SCALE;
time_phase -= ltemp << SHIFT_SCALE;
xtime.tv_usec += tick + time_adjust_step + ltemp;
} else
xtime.tv_usec += tick + time_adjust_step;
if (time_adjust)
{
/* We are doing an adjtime thing.
*
* Modify the value of the tick for next time.
* Note that a positive delta means we want the clock
* to run fast. This means that the tick should be bigger
*
* Limit the amount of the step for *next* tick to be
* in the range -tickadj .. +tickadj
*/
if (time_adjust > tickadj)
time_adjust_step = tickadj;
else if (time_adjust < -tickadj)
time_adjust_step = -tickadj;
else
time_adjust_step = time_adjust;
/* Reduce by this step the amount of time left */
time_adjust -= time_adjust_step;
}
else
time_adjust_step = 0;
if (xtime.tv_usec >= 1000000) {
xtime.tv_usec -= 1000000;
xtime.tv_sec++;
second_overflow();
}
jiffies++;
calc_load();
if ((VM_MASK & regs->eflags) || (3 & regs->cs)) {
current->utime++;
if (current != task[0]) {
if (current->priority < 15)
kstat.cpu_nice++;
else
kstat.cpu_user++;
}
/* Update ITIMER_VIRT for current task if not in a system call */
if (current->it_virt_value && !(--current->it_virt_value)) {
current->it_virt_value = current->it_virt_incr;
send_sig(SIGVTALRM,current,1);
}
} else {
current->stime++;
if(current != task[0])
kstat.cpu_system++;
#ifdef CONFIG_PROFILE
if (prof_buffer && current != task[0]) {
unsigned long eip = regs->eip;
eip >>= 2;
if (eip < prof_len)
prof_buffer[eip]++;
}
#endif
}
if (current == task[0] || (--current->counter)<=0) {
current->counter=0;
need_resched = 1;
}
/* Update ITIMER_PROF for the current task */
if (current->it_prof_value && !(--current->it_prof_value)) {
current->it_prof_value = current->it_prof_incr;
send_sig(SIGPROF,current,1);
}
for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
if (mask > timer_active)
break;
if (!(mask & timer_active))
continue;
if (tp->expires > jiffies)
continue;
mark_bh(TIMER_BH);
}
cli();
itimer_ticks++;
if (itimer_ticks > itimer_next)
need_resched = 1;
if (next_timer) {
if (next_timer->expires) {
next_timer->expires--;
if (!next_timer->expires)
mark_bh(TIMER_BH);
} else {
lost_ticks++;
mark_bh(TIMER_BH);
}
}
sti();
}
asmlinkage int sys_alarm(long seconds)
{
struct itimerval it_new, it_old;
it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
it_new.it_value.tv_sec = seconds;
it_new.it_value.tv_usec = 0;
_setitimer(ITIMER_REAL, &it_new, &it_old);
return(it_old.it_value.tv_sec + (it_old.it_value.tv_usec / 1000000));
}
asmlinkage int sys_getpid(void)
{
return current->pid;
}
asmlinkage int sys_getppid(void)
{
return current->p_opptr->pid;
}
asmlinkage int sys_getuid(void)
{
return current->uid;
}
asmlinkage int sys_geteuid(void)
{
return current->euid;
}
asmlinkage int sys_getgid(void)
{
return current->gid;
}
asmlinkage int sys_getegid(void)
{
return current->egid;
}
asmlinkage int sys_nice(long increment)
{
int newprio;
if (increment < 0 && !suser())
return -EPERM;
newprio = current->priority - increment;
if (newprio < 1)
newprio = 1;
if (newprio > 35)
newprio = 35;
current->priority = newprio;
return 0;
}
static void show_task(int nr,struct task_struct * p)
{
static char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *))
printk(stat_nam[p->state]);
else
printk(" ");
if (p == current)
printk(" current ");
else
printk(" %08lX ", ((unsigned long *)p->tss.esp)[3]);
printk("%5lu %5d %6d ",
p->tss.esp - p->kernel_stack_page, p->pid, p->p_pptr->pid);
if (p->p_cptr)
printk("%5d ", p->p_cptr->pid);
else
printk(" ");
if (p->p_ysptr)
printk("%7d", p->p_ysptr->pid);
else
printk(" ");
if (p->p_osptr)
printk(" %5d\n", p->p_osptr->pid);
else
printk("\n");
}
void show_state(void)
{
int i;
printk(" free sibling\n");
printk(" task PC stack pid father child younger older\n");
for (i=0 ; i<NR_TASKS ; i++)
if (task[i])
show_task(i,task[i]);
}
void sched_init(void)
{
int i;
struct desc_struct * p;
bh_base[TIMER_BH].routine = timer_bh;
if (sizeof(struct sigaction) != 16)
panic("Struct sigaction MUST be 16 bytes");
set_tss_desc(gdt+FIRST_TSS_ENTRY,&init_task.tss);
set_ldt_desc(gdt+FIRST_LDT_ENTRY,&default_ldt,1);
set_system_gate(0x80,&system_call);
p = gdt+2+FIRST_TSS_ENTRY;
for(i=1 ; i<NR_TASKS ; i++) {
task[i] = NULL;
p->a=p->b=0;
p++;
p->a=p->b=0;
p++;
}
/* Clear NT, so that we won't have troubles with that later on */
__asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");
load_TR(0);
load_ldt(0);
outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
outb_p(LATCH & 0xff , 0x40); /* LSB */
outb(LATCH >> 8 , 0x40); /* MSB */
if (request_irq(TIMER_IRQ,(void (*)(int)) do_timer)!=0)
panic("Could not allocate timer IRQ!");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -