📄 g72x.c
字号:
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g72x.c
*
* Common routines for G.721 and G.723 conversions.
*/
#include "g72x.h"
/* Unpack input codes and pass them back as bytes. extern "C"
input parameter : 8 -》 3
int bits; 压缩位数
char* pIn; 原始数据,被压缩数据
output paramter:
unsigned char* code;//解包后的三位字节代码
return value:
0 不需要读入数据
1 需要读入数据
*/
/*
int unpack_input(unsigned char*code,int bits, char chIn )
{
static int in_bits = 0; //输入剩余总位数,超过8位,则减去8
static unsigned int in_buffer = 0;//输入未处理缓冲
int nFlag =0;
if (in_bits < bits) {//如果输入位数少于要求位数了,则读入输入缓冲区字节,
in_buffer |= (chIn << in_bits);//新读入字节放高位
in_bits += 8;
nFlag = 1;
}
*code = in_buffer & ((1 << bits) - 1);
in_buffer >>= bits;//读入缓冲区向低位移
in_bits -= bits;
return nFlag;
}
*/
/* * Pack output codes into bytes and write them to stdout.
Input parameter :3->8
Unsigned code; 已压缩数据
Int bits; 压缩位数
Output parameter:
Char* pout; 解压后的数据
Return value;
1 输出到输出缓冲区
0 不需要输出到输出缓冲区
*/
/*int pack_output(unsigned code,int bits, char* pOut)
{
static unsigned int out_buffer = 0; //输出总位数,如果超过8位,则减去8位
static int out_bits = 0;//输出未处理缓冲
out_buffer |= (code << out_bits);
out_bits += bits;
if (out_bits >= 8) {
pOut[0] = out_buffer & 0xff;
out_bits -= 8;
out_buffer >>= 8;
return 1;
}
return 0;
}
*/
static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
/*
* quan()
*
* quantizes the input val against the table of size short integers.
* It returns i if table[i - 1] <= val < table[i].
*
* Using linear search for simple coding.
*/
static int
quan(
int val,
short *table,
int size)
{
int i;
for (i = 0; i < size; i++)
if (val < *table++)
break;
return (i);
}
/*
* fmult()
*
* returns the integer product of the 14-bit integer "an" and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static int
fmult(
int an,
int srn)
{
short anmag, anexp, anmant;
short wanexp, wanmag, wanmant;
short retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
anexp = quan(anmag, power2, 15) - 6;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
(wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
/*
* g72x_init_state()
*
* This routine initializes and/or resets the g72x_state structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
void
g72x_init_state(
struct g72x_state *state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++) {
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
state_ptr->sr[cnta] = 32;
}
for (cnta = 0; cnta < 6; cnta++) {
state_ptr->b[cnta] = 0;
state_ptr->dq[cnta] = 32;
}
state_ptr->td = 0;
}
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
int
predictor_zero(
struct g72x_state *state_ptr)
{
int i;
int sezi;
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
for (i = 1; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return (sezi);
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
int
predictor_pole(
struct g72x_state *state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
}
/*
* step_size()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
int
step_size(
struct g72x_state *state_ptr)
{
int y;
int dif;
int al;
if (state_ptr->ap >= 256)
return (state_ptr->yu);
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if (dif > 0)
y += (dif * al) >> 6;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6;
return (y);
}
}
/*
* quantize()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
int
quantize(
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short *table, /* quantization table */
int size) /* table size of short integers */
{
short dqm; /* Magnitude of 'd' */
short exp; /* Integer part of base 2 log of 'd' */
short mant; /* Fractional part of base 2 log */
short dl; /* Log of magnitude of 'd' */
short dln; /* Step size scale factor normalized log */
int i;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs(d);
exp = quan(dqm >> 1, power2, 15);
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
dl = (exp << 7) + mant;
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2);
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan(dln, table, size);
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i);
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1); /* new in 1988 */
else
return (i);
}
/*
* reconstruct()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'i' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
int
reconstruct(
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y) /* Step size multiplier */
{
short dql; /* Log of 'dq' magnitude */
short dex; /* Integer part of log */
short dqt;
short dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0) {
return ((sign) ? -0x8000 : 0);
} else { /* ANTILOG */
dex = (dql >> 7) & 15;
dqt = 128 + (dql & 127);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -