📄 quaternion_test.cpp
字号:
// test file for quaternion.hpp
// (C) Copyright Hubert Holin 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <iomanip>
#include <iostream>
#include <sstream>
#include <functional>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/unit_test_suite_ex.hpp>
#include <boost/math/quaternion.hpp>
#if defined(__GNUC__) && (__GNUC__ < 3)
// gcc 2.x ignores function scope using declarations,
// put them in the scope of the enclosing namespace instead:
using ::std::sqrt;
using ::std::atan;
using ::std::log;
using ::std::exp;
using ::std::cos;
using ::std::sin;
using ::std::tan;
using ::std::cosh;
using ::std::sinh;
using ::std::tanh;
using ::std::numeric_limits;
using ::boost::math::abs;
#endif /* defined(__GNUC__) && (__GNUC__ < 3) */
#ifdef BOOST_NO_STDC_NAMESPACE
using ::sqrt;
using ::atan;
using ::log;
using ::exp;
using ::cos;
using ::sin;
using ::tan;
using ::cosh;
using ::sinh;
using ::tanh;
#endif /* BOOST_NO_STDC_NAMESPACE */
#ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
using ::boost::math::real;
using ::boost::math::unreal;
using ::boost::math::sup;
using ::boost::math::l1;
using ::boost::math::abs;
using ::boost::math::norm;
using ::boost::math::conj;
using ::boost::math::exp;
using ::boost::math::pow;
using ::boost::math::cos;
using ::boost::math::sin;
using ::boost::math::tan;
using ::boost::math::cosh;
using ::boost::math::sinh;
using ::boost::math::tanh;
using ::boost::math::sinc_pi;
using ::boost::math::sinhc_pi;
#endif /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */
// Provide standard floating point abs() overloads for MSVC
#ifdef BOOST_MSVC
#if (BOOST_MSVC < 1300) || (defined(_MSC_EXTENSIONS) && BOOST_MSVC < 1310)
inline float abs(float v)
{
return(fabs(v));
}
inline double abs(double v)
{
return(fabs(v));
}
inline long double abs(long double v)
{
return(fabs(v));
}
#endif /* need abs */
#endif /* BOOST_MSVC */
// explicit (if ludicrous) instanciation
#ifndef __GNUC__
template class ::boost::math::quaternion<int>;
#else
// gcc doesn't like the absolutely-qualified namespace
template class boost::math::quaternion<int>;
#endif
void quaternion_manual_test()
{
// tests for evaluation by humans
// using default constructor
::boost::math::quaternion<float> q0;
::boost::math::quaternion<float> qa[2];
// using constructor "H seen as R^4"
::boost::math::quaternion<double> q1(1,2,3,4);
::std::complex<float> c0(5,6);
// using constructor "H seen as C^2"
::boost::math::quaternion<float> q2(c0);
// using UNtemplated copy constructor
::boost::math::quaternion<float> q3(q2);
// using templated copy constructor
::boost::math::quaternion<long double> q4(q3);
// using UNtemplated assignment operator
q3 = q0;
qa[0] = q0;
// using templated assignment operator
q4 = q0;
qa[1] = q1;
float f0(7);
// using converting assignment operator
q2 = f0;
// using converting assignment operator
q3 = c0;
// using += (const T &)
q2 += f0;
// using += (const ::std::complex<T> &)
q2 += c0;
// using += (const quaternion<X> &)
q2 += q3;
// using -= (const T &)
q3 -= f0;
// using -= (const ::std::complex<T> &)
q3 -= c0;
// using -= (const quaternion<X> &)
q3 -= q2;
double d0(8);
::std::complex<double> c1(9,10);
// using *= (const T &)
q1 *= d0;
// using *= (const ::std::complex<T> &)
q1 *= c1;
// using *= (const quaternion<X> &)
q1 *= q1;
long double l0(11);
::std::complex<long double> c2(12,13);
// using /= (const T &)
q4 /= l0;
// using /= (const ::std::complex<T> &)
q4 /= c2;
// using /= (const quaternion<X> &)
q4 /= q1;
// using + (const T &, const quaternion<T> &)
::boost::math::quaternion<float> q5 = f0+q2;
// using + (const quaternion<T> &, const T &)
::boost::math::quaternion<float> q6 = q2+f0;
// using + (const ::std::complex<T> &, const quaternion<T> &)
::boost::math::quaternion<float> q7 = c0+q2;
// using + (const quaternion<T> &, const ::std::complex<T> &)
::boost::math::quaternion<float> q8 = q2+c0;
// using + (const quaternion<T> &,const quaternion<T> &)
::boost::math::quaternion<float> q9 = q2+q3;
// using - (const T &, const quaternion<T> &)
q5 = f0-q2;
// using - (const quaternion<T> &, const T &)
q6 = q2-f0;
// using - (const ::std::complex<T> &, const quaternion<T> &)
q7 = c0-q2;
// using - (const quaternion<T> &, const ::std::complex<T> &)
q8 = q2-c0;
// using - (const quaternion<T> &,const quaternion<T> &)
q9 = q2-q3;
// using * (const T &, const quaternion<T> &)
q5 = f0*q2;
// using * (const quaternion<T> &, const T &)
q6 = q2*f0;
// using * (const ::std::complex<T> &, const quaternion<T> &)
q7 = c0*q2;
// using * (const quaternion<T> &, const ::std::complex<T> &)
q8 = q2*c0;
// using * (const quaternion<T> &,const quaternion<T> &)
q9 = q2*q3;
// using / (const T &, const quaternion<T> &)
q5 = f0/q2;
// using / (const quaternion<T> &, const T &)
q6 = q2/f0;
// using / (const ::std::complex<T> &, const quaternion<T> &)
q7 = c0/q2;
// using / (const quaternion<T> &, const ::std::complex<T> &)
q8 = q2/c0;
// using / (const quaternion<T> &,const quaternion<T> &)
q9 = q2/q3;
// using + (const quaternion<T> &)
q2 = +q0;
// using - (const quaternion<T> &)
q2 = -q3;
// using == (const T &, const quaternion<T> &)
f0 == q2;
// using == (const quaternion<T> &, const T &)
q2 == f0;
// using == (const ::std::complex<T> &, const quaternion<T> &)
c0 == q2;
// using == (const quaternion<T> &, const ::std::complex<T> &)
q2 == c0;
// using == (const quaternion<T> &,const quaternion<T> &)
q2 == q3;
// using != (const T &, const quaternion<T> &)
f0 != q2;
// using != (const quaternion<T> &, const T &)
q2 != f0;
// using != (const ::std::complex<T> &, const quaternion<T> &)
c0 != q2;
// using != (const quaternion<T> &, const ::std::complex<T> &)
q2 != c0;
// using != (const quaternion<T> &,const quaternion<T> &)
q2 != q3;
BOOST_MESSAGE("Please input a quaternion...");
#ifdef BOOST_INTERACTIVE_TEST_INPUT_ITERATOR
::std::cin >> q0;
if (::std::cin.fail())
{
BOOST_MESSAGE("You have entered nonsense!");
}
else
{
BOOST_MESSAGE("You have entered the quaternion "<< q0 << " .");
}
#else
::std::istringstream bogus("(1,2,3,4)");
bogus >> q0;
BOOST_MESSAGE("You have entered the quaternion " << q0 << " .");
#endif
BOOST_MESSAGE("For this quaternion:");
BOOST_MESSAGE( "the value of the real part is "
<< real(q0));
BOOST_MESSAGE( "the value of the unreal part is "
<< unreal(q0));
BOOST_MESSAGE( "the value of the sup norm is "
<< sup(q0));
BOOST_MESSAGE( "the value of the l1 norm is "
<< l1(q0));
BOOST_MESSAGE( "the value of the magnitude (euclidian norm) is "
<< abs(q0));
BOOST_MESSAGE( "the value of the (Cayley) norm is "
<< norm(q0));
BOOST_MESSAGE( "the value of the conjugate is "
<< conj(q0));
BOOST_MESSAGE( "the value of the exponential is "
<< exp(q0));
BOOST_MESSAGE( "the value of the cube is "
<< pow(q0,3));
BOOST_MESSAGE( "the value of the cosinus is "
<< cos(q0));
BOOST_MESSAGE( "the value of the sinus is "
<< sin(q0));
BOOST_MESSAGE( "the value of the tangent is "
<< tan(q0));
BOOST_MESSAGE( "the value of the hyperbolic cosinus is "
<< cosh(q0));
BOOST_MESSAGE( "the value of the hyperbolic sinus is "
<< sinh(q0));
BOOST_MESSAGE( "the value of the hyperbolic tangent is "
<< tanh(q0));
#ifdef BOOST_NO_TEMPLATE_TEMPLATES
BOOST_MESSAGE("no template templates, can't compute cardinal functions");
#else /* BOOST_NO_TEMPLATE_TEMPLATES */
BOOST_MESSAGE( "the value of "
<< "the Sinus Cardinal (of index pi) is "
<< sinc_pi(q0));
BOOST_MESSAGE( "the value of "
<< "the Hyperbolic Sinus Cardinal (of index pi) is "
<< sinhc_pi(q0));
#endif /* BOOST_NO_TEMPLATE_TEMPLATES */
BOOST_MESSAGE(" ");
float rho = ::std::sqrt(8.0f);
float theta = ::std::atan(1.0f);
float phi1 = ::std::atan(1.0f);
float phi2 = ::std::atan(1.0f);
BOOST_MESSAGE( "The value of the quaternion represented "
<< "in spherical form by "
<< "rho = " << rho << " , theta = " << theta
<< " , phi1 = " << phi1 << " , phi2 = " << phi2
<< " is "
<< ::boost::math::spherical(rho, theta, phi1, phi2));
float alpha = ::std::atan(1.0f);
BOOST_MESSAGE( "The value of the quaternion represented "
<< "in semipolar form by "
<< "rho = " << rho << " , alpha = " << alpha
<< " , phi1 = " << phi1 << " , phi2 = " << phi2
<< " is "
<< ::boost::math::semipolar(rho, alpha, phi1, phi2));
float rho1 = 1;
float rho2 = 2;
float theta1 = 0;
float theta2 = ::std::atan(1.0f)*2;
BOOST_MESSAGE( "The value of the quaternion represented "
<< "in multipolar form by "
<< "rho1 = " << rho1 << " , theta1 = " << theta1
<< " , rho2 = " << rho2 << " , theta2 = " << theta2
<< " is "
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -