📄 vector_expression.hpp
字号:
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
i_ = it.i_;
it1_ = it.it1_;
it1_end_ = it.it1_end_;
it2_ = it.it2_;
it2_end_ = it.it2_end_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return index () == it.index ();
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return index () < it.index ();
}
private:
size_type i_;
const_iterator1_type it1_;
const_iterator1_type it1_end_;
const_iterator2_type it2_;
const_iterator2_type it2_end_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
// Reverse iterator
#ifdef BOOST_MSVC_STD_ITERATOR
typedef reverse_iterator_base<const_iterator, value_type, const_reference> const_reverse_iterator;
#else
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
#endif
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
private:
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template<class E1, class E2, class F>
struct vector_binary_traits {
typedef vector_binary<E1, E2, F> expression_type;
#ifdef BOOST_UBLAS_USE_ET
typedef expression_type result_type;
#else
typedef vector<typename F::result_type> result_type;
#endif
};
// (v1 + v2) [i] = v1 [i] + v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_plus<typename E1::value_type,
typename E2::value_type> >::result_type
operator + (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef BOOST_UBLAS_TYPENAME vector_binary_traits<E1, E2, scalar_plus<BOOST_UBLAS_TYPENAME E1::value_type,
BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
// (v1 - v2) [i] = v1 [i] - v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_minus<typename E1::value_type,
typename E2::value_type> >::result_type
operator - (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef BOOST_UBLAS_TYPENAME vector_binary_traits<E1, E2, scalar_minus<BOOST_UBLAS_TYPENAME E1::value_type,
BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
// (v1 * v2) [i] = v1 [i] * v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_multiplies<typename E1::value_type,
typename E2::value_type> >::result_type
element_prod (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef BOOST_UBLAS_TYPENAME vector_binary_traits<E1, E2, scalar_multiplies<BOOST_UBLAS_TYPENAME E1::value_type,
BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
// (v1 / v2) [i] = v1 [i] / v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_divides<typename E1::value_type,
typename E2::value_type> >::result_type
element_div (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef BOOST_UBLAS_TYPENAME vector_binary_traits<E1, E2, scalar_divides<BOOST_UBLAS_TYPENAME E1::value_type,
BOOST_UBLAS_TYPENAME E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
template<class E1, class E2, class F>
class vector_binary_scalar1:
public vector_expression<vector_binary_scalar1<E1, E2, F> > {
public:
#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS
BOOST_UBLAS_USING vector_expression<vector_binary_scalar1<E1, E2, F> >::operator ();
#endif
typedef E1 expression1_type;
typedef E2 expression2_type;
typedef F functor_type;
typedef typename E2::size_type size_type;
typedef typename E2::difference_type difference_type;
typedef typename F::result_type value_type;
typedef value_type const_reference;
typedef const_reference reference;
typedef const value_type *const_pointer;
typedef const_pointer pointer;
typedef E1 expression1_closure_type;
typedef typename E2::const_closure_type expression2_closure_type;
typedef const vector_binary_scalar1<E1, E2, F> const_self_type;
typedef vector_binary_scalar1<E1, E2, F> self_type;
typedef const_self_type const_closure_type;
typedef const_closure_type closure_type;
typedef typename E1::value_type const_iterator1_type;
typedef typename E2::const_iterator const_iterator2_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_binary_scalar1 ():
e1_ (), e2_ () {}
BOOST_UBLAS_INLINE
vector_binary_scalar1 (const expression1_type &e1, const expression2_type &e2):
e1_ (e1), e2_ (e2) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return e2_.size ();
}
BOOST_UBLAS_INLINE
const expression1_closure_type &expression1 () const {
return e1_;
}
BOOST_UBLAS_INLINE
const expression2_closure_type &expression2 () const {
return e2_;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return functor_type () (e1_, e2_ (i));
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return functor_type () (e1_, e2_ [i]);
}
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<const_closure_type, typename const_iterator2_type::iterator_category> const_iterator;
typedef const_iterator iterator;
#else
class const_iterator;
typedef const_iterator iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
const_iterator2_type it (e2_.find (i));
return const_iterator (*this, it.index ());
#else
return const_iterator (*this, e1_, e2_.find (i));
#endif
}
// Iterator enhances the iterator of the referenced vector expression
// with the binary functor.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_binary_scalar1>,
#ifdef BOOST_UBLAS_USE_ITERATOR_BASE_TRAITS
public iterator_base_traits<typename E2::const_iterator::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
#else
public random_access_iterator_base<typename E2::const_iterator::iterator_category,
const_iterator, value_type> {
#endif
public:
typedef typename E2::const_iterator::iterator_category iterator_category;
#ifdef BOOST_MSVC_STD_ITERATOR
typedef const_reference reference;
#else
typedef typename vector_binary_scalar1::difference_type difference_type;
typedef typename vector_binary_scalar1::value_type value_type;
typedef typename vector_binary_scalar1::const_reference reference;
typedef typename vector_binary_scalar1::const_pointer pointer;
#endif
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vbs, const const_iterator1_type &it1, const const_iterator2_type &it2):
container_const_reference<self_type> (vbs), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// FIXME: we shouldn't compare floats
// BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return functor_type () (it1_, *it2_);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it2_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// FIXME: we shouldn't compare floats
// BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// FIXME: we shouldn't compare floats
// BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
const_iterator1_type it1_;
const_iterator2_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
// Reverse iterator
#ifdef BOOST_MSVC_STD_ITERATOR
typedef reverse_iterator_base<const_iterator, value_type, const_reference> const_reverse_iterator;
#else
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
#endif
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
private:
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template<class T1, class E2, class F>
struct vector_binary_scalar1_traits {
typedef vector_binary_scalar1<scalar_const_reference<T1>, E2, F> expression_type;
#ifdef BOOST_UBLAS_USE_ET
typedef expression_type result_type;
#else
typedef vector<typename F::result_type> result_type;
#endif
};
// (t * v) [i] = t * v [i]
template<class T1, class E2>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -