⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hermitian.hpp

📁 boost库提供标准的C++ API 配合dev c++使用,功能更加强大
💻 HPP
📖 第 1 页 / 共 5 页
字号:
        typedef typename M::iterator1 iterator1_type;
        typedef typename M::const_iterator2 const_iterator2_type;
        typedef typename M::iterator2 iterator2_type;
#else
        typedef typename M::const_iterator1 const_iterator1_type;
        typedef typename boost::mpl::if_c<boost::is_const<M>::value,
                                          typename M::const_iterator1,
                                          typename M::iterator1>::type iterator1_type;
        typedef typename M::const_iterator2 const_iterator2_type;
        typedef typename boost::mpl::if_c<boost::is_const<M>::value,
                                          typename M::const_iterator2,
                                          typename M::iterator2>::type iterator2_type;
#endif
        typedef typename storage_restrict_traits<typename M::storage_category,
                                                 packed_proxy_tag>::storage_category storage_category;
        typedef typename F::packed_category packed_category;
        typedef typename M::orientation_category orientation_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        hermitian_adaptor ():
            matrix_expression<self_type> (),
            data_ (nil_) {
            BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ());
        }
        BOOST_UBLAS_INLINE
        hermitian_adaptor (matrix_type &data):
            matrix_expression<self_type> (),
            data_ (data) {
            BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ());
        }
        BOOST_UBLAS_INLINE
        hermitian_adaptor (const hermitian_adaptor &m):
            matrix_expression<self_type> (),
            data_ (m.data_) {
            BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ());
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size1 () const {
            return data_.size1 ();
        }
        BOOST_UBLAS_INLINE
        size_type size2 () const {
            return data_.size2 ();
        }
        BOOST_UBLAS_INLINE
        const matrix_closure_type &data () const {
            return data_;
        }
        BOOST_UBLAS_INLINE
        matrix_closure_type &data () {
            return data_;
        }

#ifndef BOOST_UBLAS_DEPRECATED
        // Resetting
        BOOST_UBLAS_INLINE
        void reset (matrix_type &data) {
            BOOST_UBLAS_CHECK (data.size1 () == data.size2 (), bad_size ());
            // References are not retargetable.
            // Thanks to Michael Stevens for spotting this.
            // data_ = data;
            data_.reset (data);
        }
#endif

        // Element access
#ifndef BOOST_UBLAS_PROXY_CONST_MEMBER
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i, size_type j) const {
            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
            // if (i == j)
            //     return type_traits<value_type>::real (data () (i, i));
            // else
            if (functor_type::other (i, j))
                return data () (i, j);
            else
                return type_traits<value_type>::conj (data () (j, i));
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i, size_type j) {
            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
            if (functor_type::other (i, j))
                return data () (i, j);
            else {
                // Raising exceptions abstracted as requested during review.
                // throw external_logic ();
                external_logic ().raise ();
                return conj_ = type_traits<value_type>::conj (data () (j, i));
            }
#else
            if (functor_type::other (i, j))
                return reference (*this, i, j, data () (i, j));
            else
                return reference (*this, i, j, type_traits<value_type>::conj (data () (j, i)));
#endif
        }
        BOOST_UBLAS_INLINE
        void at (size_type i, size_type j, value_type t) {
            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
            // if (i == j)
            //     data () (i, i) = type_traits<value_type>::real (t);
            // else
            if (functor_type::other (i, j))
                data () (i, j) = t;
            else
                data () (j, i) = type_traits<value_type>::conj (t);
        }
#else
        BOOST_UBLAS_INLINE
        reference operator () (size_type i, size_type j) const {
            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifndef BOOST_UBLAS_STRICT_HERMITIAN
            if (functor_type::other (i, j))
                return data () (i, j);
            else {
                // Raising exceptions abstracted as requested during review.
                // throw external_logic ();
                external_logic ().raise ();
                return conj_ = type_traits<value_type>::conj (data () (j, i));
            }
#else
            if (functor_type::other (i, j))
                return reference (*this, i, j, data () (i, j));
            else
                return reference (*this, i, j, type_traits<value_type>::conj (data () (j, i)));
#endif
        }
        BOOST_UBLAS_INLINE
        void at (size_type i, size_type j, value_type t) const {
            BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
            BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
            // if (i == j)
            //     data () (i, i) = type_traits<value_type>::real (t);
            // else
            if (functor_type::other (i, j))
                data () (i, j) = t;
            else
                data () (j, i) = type_traits<value_type>::conj (t);
        }
#endif

        // Assignment
        BOOST_UBLAS_INLINE
        hermitian_adaptor &operator = (const hermitian_adaptor &m) {
            matrix_assign (scalar_assign<reference, value_type> (), *this, m, functor_type ());
            return *this;
        }
        BOOST_UBLAS_INLINE
        hermitian_adaptor &assign_temporary (hermitian_adaptor &m) { 
            *this = m;
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        hermitian_adaptor &operator = (const matrix_expression<AE> &ae) { 
            matrix_assign (scalar_assign<reference, value_type> (), *this, matrix<value_type> (ae), functor_type ()); 
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        hermitian_adaptor &assign (const matrix_expression<AE> &ae) { 
            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae, functor_type ()); 
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        hermitian_adaptor& operator += (const matrix_expression<AE> &ae) {
            matrix_assign (scalar_assign<reference, value_type> (), *this, matrix<value_type> (*this + ae), functor_type ()); 
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        hermitian_adaptor &plus_assign (const matrix_expression<AE> &ae) { 
            matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae, functor_type ());
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        hermitian_adaptor& operator -= (const matrix_expression<AE> &ae) {
            matrix_assign (scalar_assign<reference, value_type> (), *this, matrix<value_type> (*this - ae), functor_type ()); 
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        hermitian_adaptor &minus_assign (const matrix_expression<AE> &ae) { 
            matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae, functor_type ());
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        hermitian_adaptor& operator *= (const AT &at) {
            // Multiplication is only allowed for real scalars,
            // otherwise the resulting matrix isn't hermitian.
            // Thanks to Peter Schmitteckert for spotting this.
            BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());
            matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        hermitian_adaptor& operator /= (const AT &at) {
            // Multiplication is only allowed for real scalars,
            // otherwise the resulting matrix isn't hermitian.
            // Thanks to Peter Schmitteckert for spotting this.
            BOOST_UBLAS_CHECK (type_traits<value_type>::imag (at) == 0, non_real ());
            matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);
            return *this;
        }

        // Comparison
        bool operator == (const hermitian_adaptor &ha) const {
            return (*this).data () == ha.data ();
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (hermitian_adaptor &m) {
            // Too unusual semantic.
            // BOOST_UBLAS_CHECK (this != &m, external_logic ());
            if (this != &m)
                matrix_swap (scalar_swap<reference, reference> (), *this, m, functor_type ());
        }
#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS
        BOOST_UBLAS_INLINE
        friend void swap (hermitian_adaptor &m1, hermitian_adaptor &m2) {
            m1.swap (m2);
        }
#endif

#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
        typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
        typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
        typedef indexed_const_iterator1<self_type, dense_random_access_iterator_tag> const_iterator1;
        typedef indexed_const_iterator2<self_type, dense_random_access_iterator_tag> const_iterator2;
#else
        class const_iterator1;
        class iterator1;
        class const_iterator2;
        class iterator2;
#endif
#ifdef BOOST_MSVC_STD_ITERATOR
        typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;
        typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;
        typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;
        typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;
#else
        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
        typedef reverse_iterator_base1<iterator1> reverse_iterator1;
        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
        typedef reverse_iterator_base2<iterator2> reverse_iterator2;
#endif

        // Element lookup
        BOOST_UBLAS_INLINE
        const_iterator1 find1 (int rank, size_type i, size_type j) const {
            if (functor_type::other (i, j)) {
                if (functor_type::other (size1 (), j)) {
                    return const_iterator1 (*this, 0, 0,
                                            data ().find1 (rank, i, j), data ().find1 (rank, size1 (), j),
                                            data ().find2 (rank, size2 (), size1 ()), data ().find2 (rank, size2 (), size1 ()));
                } else {
                    return const_iterator1 (*this, 0, 1,
                                            data ().find1 (rank, i, j), data ().find1 (rank, j, j),
                                            data ().find2 (rank, j, j), data ().find2 (rank, j, size1 ()));
                }
            } else {
                if (functor_type::other (size1 (), j)) {
                    return const_iterator1 (*this, 1, 0,
                                            data ().find1 (rank, j, j), data ().find1 (rank, size1 (), j),
                                            data ().find2 (rank, j, i), data ().find2 (rank, j, j));
                } else {
                    return const_iterator1 (*this, 1, 1,
                                            data ().find1 (rank, size1 (), size2 ()), data ().find1 (rank, size1 (), size2 ()),
                                            data ().find2 (rank, j, i), data ().find2 (rank, j, size1 ()));
                }
            }
        }
        BOOST_UBLAS_INLINE
        iterator1 find1 (int rank, size_type i, size_type j) {
            if (rank == 1)
                i = functor_type::restrict1 (i, j);
            return iterator1 (*this, data ().find1 (rank, i, j));
        }
        BOOST_UBLAS_INLINE
        const_iterator2 find2 (int rank, size_type i, size_type j) const {
            if (functor_type::other (i, j)) {
                if (functor_type::other (i, size2 ())) {
                    return const_iterator2 (*this, 1, 1,
                                            data ().find1 (rank, size2 (), size1 ()), data ().find1 (rank, size2 (), size1 ()),
                                            data ().find2 (rank, i, j), data ().find2 (rank, i, size2 ()));
                } else {
                    return const_iterator2 (*this, 1, 0,
                                            data ().find1 (rank, i, i), data ().find1 (rank, size2 (), i),
                                            data ().find2 (rank, i, j), data ().find2 (rank, i, i));
                }
            } else {
                if (functor_type::other (i, size2 ())) {
                    return const_iterator2 (*this, 0, 1,
                                            data ().find1 (rank, j, i), data ().find1 (rank, i, i),
                                            data ().find2 (rank, i, i), data ().find2 (rank, i, size2 ()));
                } else {
                    return const_iterator2 (*this, 0, 0,
                                            data ().find1 (rank, j, i), data ().find1 (rank, size2 (), i),
                                            data ().find2 (rank, size1 (), size2 ()), data ().find2 (rank, size2 (), size2 ()));
                }
            }
        }
        BOOST_UBLAS_INLINE
        iterator2 find2 (int rank, size_type i, size_type j) {
            if (rank == 1)
                j = functor_type::restrict2 (i, j);
            return iterator2 (*this, data ().find2 (rank, i, j));
        }

        // Iterators simply are indices.

#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
        class const_iterator1:
            public container_const_reference<hermitian_adaptor>,
            public random_access_i

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -