📄 triangular.hpp
字号:
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef BOOST_UBLAS_TRIANGULAR_H
#define BOOST_UBLAS_TRIANGULAR_H
#include <boost/numeric/ublas/config.hpp>
#include <boost/numeric/ublas/storage.hpp>
#include <boost/numeric/ublas/matrix.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
// Array based triangular matrix class
template<class T, class F1, class F2, class A>
class triangular_matrix:
public matrix_expression<triangular_matrix<T, F1, F2, A> > {
public:
#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS
BOOST_UBLAS_USING matrix_expression<triangular_matrix<T, F1, F2, A> >::operator ();
#endif
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
// typedef const T &const_reference;
typedef typename type_traits<T>::const_reference const_reference;
typedef T &reference;
typedef const T *const_pointer;
typedef T *pointer;
typedef F1 functor1_type;
typedef F2 functor2_type;
typedef A array_type;
typedef const A const_array_type;
typedef const triangular_matrix<T, F1, F2, A> const_self_type;
typedef triangular_matrix<T, F1, F2, A> self_type;
#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS
typedef const matrix_const_reference<const_self_type> const_closure_type;
#else
typedef const matrix_reference<const_self_type> const_closure_type;
#endif
typedef matrix_reference<self_type> closure_type;
typedef packed_proxy_tag storage_category;
typedef typename F1::packed_category packed_category;
typedef typename F2::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
triangular_matrix ():
matrix_expression<self_type> (),
size1_ (0), size2_ (0), data_ (0) {}
BOOST_UBLAS_INLINE
triangular_matrix (size_type size1, size_type size2):
matrix_expression<self_type> (),
size1_ (size1), size2_ (size2), data_ (0) {
resize (size1, size2);
}
BOOST_UBLAS_INLINE
triangular_matrix (size_type size1, size_type size2, const array_type &data):
matrix_expression<self_type> (),
size1_ (size1), size2_ (size2), data_ (data) {}
BOOST_UBLAS_INLINE
triangular_matrix (const triangular_matrix &m):
matrix_expression<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix (const matrix_expression<AE> &ae):
matrix_expression<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (0) {
#ifndef BOOST_UBLAS_TYPE_CHECK
resize (ae ().size1 (), ae ().size2 (), false);
#else
resize (ae ().size1 (), ae ().size2 (), true);
#endif
matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
const_array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
size1_ = size1;
size2_ = size2;
detail::resize (data (), functor1_type::packed_size (size1, size2), preserve);
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
if (functor1_type::other (i, j))
return data () [functor1_type::element (functor2_type (), i, size1_, j, size2_)];
else if (functor1_type::one (i, j))
return one_;
else
return zero_;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
if (functor1_type::other (i, j))
return data () [functor1_type::element (functor2_type (), i, size1_, j, size2_)];
else if (functor1_type::one (i, j)) {
#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER
// Raising exceptions abstracted as requested during review.
// throw external_logic ();
external_logic ().raise ();
#endif
return one_;
} else {
#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER
// Raising exceptions abstracted as requested during review.
// throw external_logic ();
external_logic ().raise ();
#endif
return zero_;
}
}
// Assignment
BOOST_UBLAS_INLINE
triangular_matrix &operator = (const triangular_matrix &m) {
// Precondition for container relaxed as requested during review.
// BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
// BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
return *this;
}
BOOST_UBLAS_INLINE
triangular_matrix &assign_temporary (triangular_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix &operator = (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (ae));
#else
// return assign (self_type (ae));
self_type temporary (ae);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix &reset (const matrix_expression<AE> &ae) {
self_type temporary (ae);
resize (temporary.size1 (), temporary.size2 (), false);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix& operator += (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (*this + ae));
#else
// return assign (self_type (*this + ae));
self_type temporary (*this + ae);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix& operator -= (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (*this - ae));
#else
// return assign (self_type (*this - ae));
self_type temporary (*this - ae);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
triangular_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
triangular_matrix& operator *= (const AT &at) {
matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
triangular_matrix& operator /= (const AT &at) {
matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (triangular_matrix &m) {
// Too unusual semantic.
// BOOST_UBLAS_CHECK (this != &m, external_logic ());
if (this != &m) {
// Precondition for container relaxed as requested during review.
// BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
// BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
}
#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS
BOOST_UBLAS_INLINE
friend void swap (triangular_matrix &m1, triangular_matrix &m2) {
m1.swap (m2);
}
#endif
// Element insertion and erasure
// These functions should work with std::vector.
// Thanks to Kresimir Fresl for spotting this.
BOOST_UBLAS_INLINE
void insert (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
// FIXME: is this ugly check still needed?!
// #ifndef BOOST_UBLAS_USE_ET
// if (t == value_type ())
// return;
// #endif
if (functor1_type::other (i, j)) {
size_type k = functor1_type::element (functor2_type (), i, size1_, j, size2_);
BOOST_UBLAS_CHECK (type_traits<value_type>::equals (data () [k], value_type ()), bad_index ());
// data ().insert (data ().begin () + k, t);
data () [k] = t;
} else {
// Raising exceptions abstracted as requested during review.
// throw external_logic ();
external_logic ().raise ();
}
}
BOOST_UBLAS_INLINE
void erase (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
if (functor1_type::other (i, j)) {
size_type k = functor1_type::element (functor2_type (), i, size1_, j, size2_);
// data ().erase (data ().begin () + k);
data () [k] = value_type ();
}
}
BOOST_UBLAS_INLINE
void clear () {
// data ().clear ();
std::fill (data ().begin (), data ().end (), value_type ());
}
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
#ifdef BOOST_MSVC_STD_ITERATOR
typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;
#else
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j) const {
if (rank == 1)
i = functor1_type::restrict1 (i, j);
return const_iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j) {
if (rank == 1)
i = functor1_type::mutable_restrict1 (i, j);
return iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j) const {
if (rank == 1)
j = functor1_type::restrict2 (i, j);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -