⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix_sparse.hpp

📁 boost库提供标准的C++ API 配合dev c++使用,功能更加强大
💻 HPP
📖 第 1 页 / 共 5 页
字号:
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                // BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
                if (rank_ == 1 || it.rank_ == 1) {
                    return it_ == it.it_;
                } else {
                    return i_ == it.i_ && j_ == it.j_;
                }
            }

        private:
            int rank_;
            size_type i_;
            size_type j_;
            iterator_type it_;

            friend class const_iterator2;
        };

        BOOST_UBLAS_INLINE
        iterator2 begin2 () {
            return find2 (0, 0, 0);
        }
        BOOST_UBLAS_INLINE
        iterator2 end2 () {
            return find2 (0, 0, size2_);
        }

        // Reverse iterators

        BOOST_UBLAS_INLINE
        const_reverse_iterator1 rbegin1 () const {
            return const_reverse_iterator1 (end1 ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator1 rend1 () const {
            return const_reverse_iterator1 (begin1 ());
        }

        BOOST_UBLAS_INLINE
        reverse_iterator1 rbegin1 () {
            return reverse_iterator1 (end1 ());
        }
        BOOST_UBLAS_INLINE
        reverse_iterator1 rend1 () {
            return reverse_iterator1 (begin1 ());
        }

        BOOST_UBLAS_INLINE
        const_reverse_iterator2 rbegin2 () const {
            return const_reverse_iterator2 (end2 ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator2 rend2 () const {
            return const_reverse_iterator2 (begin2 ());
        }

        BOOST_UBLAS_INLINE
        reverse_iterator2 rbegin2 () {
            return reverse_iterator2 (end2 ());
        }
        BOOST_UBLAS_INLINE
        reverse_iterator2 rend2 () {
            return reverse_iterator2 (begin2 ());
        }

    private:
        size_type size1_;
        size_type size2_;
        size_type non_zeros_;
        array_type data_;
        static value_type zero_;
    };

    template<class T, class F, class A>
    typename sparse_matrix<T, F, A>::value_type sparse_matrix<T, F, A>::zero_ =
        sparse_matrix<T, F, A>::value_type ();

    // Array based sparse matrix class 
    template<class T, class F, class A>
    class sparse_vector_of_sparse_vector:
        public matrix_expression<sparse_vector_of_sparse_vector<T, F, A> > {
    public:
#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS
        BOOST_UBLAS_USING matrix_expression<sparse_vector_of_sparse_vector<T, F, A> >::operator ();
#endif
        typedef std::size_t size_type;
        typedef std::ptrdiff_t difference_type;
        typedef T value_type;
        // typedef const T &const_reference;
        typedef typename type_traits<T>::const_reference const_reference;
#if ! defined (BOOST_UBLAS_STRICT_STORAGE_SPARSE) && ! defined (BOOST_UBLAS_STRICT_MATRIX_SPARSE)
        typedef T &reference;
#elif defined (BOOST_UBLAS_STRICT_MATRIX_SPARSE)
        typedef sparse_matrix_element<sparse_vector_of_sparse_vector<T, F, A> > reference;
#elif defined (BOOST_UBLAS_STRICT_STORAGE_SPARSE)
        typedef typename detail::map_traits<typename A::data_value_type>::reference reference;
#endif
        typedef const T *const_pointer;
        typedef T *pointer;
        typedef A array_type;
        typedef const A const_array_type;
        typedef F functor_type;
        typedef const sparse_vector_of_sparse_vector<T, F, A> const_self_type;
        typedef sparse_vector_of_sparse_vector<T, F, A> self_type;
#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS
        typedef const matrix_const_reference<const_self_type> const_closure_type;
#else
        typedef const matrix_reference<const_self_type> const_closure_type;
#endif
        typedef matrix_reference<self_type> closure_type;
        typedef typename A::value_type::second_type vector_data_value_type;
        typedef typename A::const_iterator vector_const_iterator_type;
        typedef typename A::iterator vector_iterator_type;
        typedef typename A::value_type::second_type::const_iterator const_iterator_type;
        typedef typename A::value_type::second_type::iterator iterator_type;
        typedef sparse_tag storage_category;
        typedef typename F::orientation_category orientation_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector ():
            matrix_expression<self_type> (),
            size1_ (0), size2_ (0), non_zeros_ (0), data_ () {
            data_ [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
        }
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector (size_type size1, size_type size2, size_type non_zeros = 0):
            matrix_expression<self_type> (),
            size1_ (size1), size2_ (size2), non_zeros_ (non_zeros), data_ () {
            data_ [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
        }
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector (const sparse_vector_of_sparse_vector &m):
            matrix_expression<self_type> (),
            size1_ (m.size1_), size2_ (m.size2_), non_zeros_ (m.non_zeros_), data_ (m.data_) {}
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector (const matrix_expression<AE> &ae, size_type non_zeros = 0):
            matrix_expression<self_type> (),
            size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), non_zeros_ (non_zeros), data_ () {
            data_ [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size1 () const {
            return size1_;
        }
        BOOST_UBLAS_INLINE
        size_type size2 () const {
            return size2_;
        }
        BOOST_UBLAS_INLINE
        size_type non_zeros () const {
            size_type non_zeros = 0;
            for (vector_const_iterator_type itv = data_ ().begin (); itv != data_ ().end (); ++ itv)
                non_zeros += (*itv).size ();
            return non_zeros;
        }
        BOOST_UBLAS_INLINE
        const_array_type &data () const {
            return data_;
        }
        BOOST_UBLAS_INLINE
        array_type &data () {
            return data_;
        }

        // Resizing
        BOOST_UBLAS_INLINE
        void resize (size_type size1, size_type size2, size_type non_zeros = 0) {
            size1_ = size1;
            size2_ = size2;
            non_zeros_ = non_zeros;
            data ().clear ();
            data () [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
        }

        // Proxy support
#ifdef BOOST_UBLAS_STRICT_MATRIX_SPARSE
        pointer find_element (size_type i, size_type j) {
            vector_iterator_type itv (data ().find (functor_type::element1 (i, size1_, j, size2_)));
            if (itv == data ().end () || (*itv).first != functor_type::element1 (i, size1_, j, size2_))
                return 0;
            iterator_type it ((*itv).second.find (functor_type::element2 (i, size1_, j, size2_)));
            if (it == (*itv).second.end () || (*it).first != functor_type::element2 (i, size1_, j, size2_))
                return 0;
            return &(*it).second;
        }
#endif

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i, size_type j) const {
            vector_const_iterator_type itv (data ().find (functor_type::element1 (i, size1_, j, size2_)));
            if (itv == data ().end () || (*itv).first != functor_type::element1 (i, size1_, j, size2_))
                return zero_;
            const_iterator_type it ((*itv).second.find (functor_type::element2 (i, size1_, j, size2_)));
            if (it == (*itv).second.end () || (*it).first != functor_type::element2 (i, size1_, j, size2_))
                return zero_;
            return (*it).second;
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
            return data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)];
#else
            return reference (*this, i, j);
#endif
        }

        // Assignment
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &operator = (const sparse_vector_of_sparse_vector &m) {
            // Too unusual semantic.
            // BOOST_UBLAS_CHECK (this != &m, external_logic ());
            if (this != &m) {
                // Precondition for container relaxed as requested during review.
                // BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
                // BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
                size1_ = m.size1_;
                size2_ = m.size2_;
                non_zeros_ = m.non_zeros_;
                data () = m.data ();
            }
            return *this;
        }
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &assign_temporary (sparse_vector_of_sparse_vector &m) {
            swap (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &operator = (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
            return assign_temporary (self_type (ae, non_zeros_));
#else
            // return assign (self_type (ae, non_zeros_));
            self_type temporary (ae, non_zeros_);
            return assign_temporary (temporary);
#endif
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &reset (const matrix_expression<AE> &ae) {
            self_type temporary (ae, non_zeros_);
            resize (temporary.size1 (), temporary.size2 (), non_zeros_);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &assign (const matrix_expression<AE> &ae) {
            matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae); 
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector& operator += (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
            return assign_temporary (self_type (*this + ae, non_zeros_));
#else
            // return assign (self_type (*this + ae, non_zeros_));
            self_type temporary (*this + ae, non_zeros_);
            return assign_temporary (temporary);
#endif
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &plus_assign (const matrix_expression<AE> &ae) { 
            matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector& operator -= (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
            return assign_temporary (self_type (*this - ae, non_zeros_));
#else
            // return assign (self_type (*this - ae, non_zeros_));
            self_type temporary (*this - ae, non_zeros_);
            return assign_temporary (temporary);
#endif
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector &minus_assign (const matrix_expression<AE> &ae) { 
            matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector& operator *= (const AT &at) {
            matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        sparse_vector_of_sparse_vector& operator /= (const AT &at) {
            matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (sparse_vector_of_sparse_vector &m) {
            // Too unusual semantic.
            // BOOST_UBLAS_CHECK (this != &m, external_logic ());
            if (this != &m) {
                // Precondition for container relaxed as requested during review.
                // BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
                // BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
                // BOOST_UBLAS_CHECK (non_zeros_ == m.non_zeros_, bad_size ());
                std::swap (size1_, m.size1_);
                std::swap (size2_, m.size2_);
                std::swap (non_zeros_, m.non_zeros_);
                data ().swap (m.data ());
            }
        }
#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS
        BOOST_UBLAS_INLINE
        friend void swap (sparse_vector_of_sparse_vector &m1, sparse_vector_of_sparse_vector &m2) {
            m1.swap (m2);
        }
#endif

        // Element insertion and erasure
        BOOST_UBLAS_INLINE
        void insert (size_type i, size_type j, const_reference t) {
            vector_iterator_type itv (data ().find (f

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -