📄 matrix_sparse.hpp
字号:
BOOST_UBLAS_INLINE
sparse_matrix ():
matrix_expression<self_type> (),
size1_ (0), size2_ (0), non_zeros_ (0), data_ () {}
BOOST_UBLAS_INLINE
sparse_matrix (size_type size1, size_type size2, size_type non_zeros = 0):
matrix_expression<self_type> (),
size1_ (size1), size2_ (size2), non_zeros_ (non_zeros), data_ () {
reserve (non_zeros_);
}
BOOST_UBLAS_INLINE
sparse_matrix (const sparse_matrix &m):
matrix_expression<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), non_zeros_ (m.non_zeros_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix (const matrix_expression<AE> &ae, size_type non_zeros = 0):
matrix_expression<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), non_zeros_ (non_zeros), data_ () {
reserve (non_zeros_);
matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type non_zeros () const {
return data_.size ();
}
BOOST_UBLAS_INLINE
const_array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, size_type non_zeros = 0) {
size1_ = size1;
size2_ = size2;
non_zeros_ = std::max (non_zeros, std::min (size1_, size2_));
// Guarding against overflow.
// Thanks to Alexei Novakov for the hint.
// non_zeros_ = std::min (non_zeros_, size1_ * size2_);
if (size1_ > 0 && non_zeros_ / size1_ >= size2_)
non_zeros_ = size1_ * size2_;
detail::reserve (data (), non_zeros_);
data ().clear ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros = 0) {
non_zeros_ = std::max (non_zeros, std::min (size1_, size2_));
// Guarding against overflow.
// Thanks to Alexei Novakov for the hint.
// non_zeros_ = std::min (non_zeros_, size1_ * size2_);
if (size1_ > 0 && non_zeros_ / size1_ >= size2_)
non_zeros_ = size1_ * size2_;
detail::reserve (data (), non_zeros_);
}
// Proxy support
#ifdef BOOST_UBLAS_STRICT_MATRIX_SPARSE
pointer find_element (size_type i, size_type j) {
iterator_type it (data ().find (functor_type::element (i, size1_, j, size2_)));
if (it == data ().end () || (*it).first != functor_type::element (i, size1_, j, size2_))
return 0;
return &(*it).second;
}
#endif
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const_iterator_type it (data ().find (functor_type::element (i, size1_, j, size2_)));
if (it == data ().end () || (*it).first != functor_type::element (i, size1_, j, size2_))
return zero_;
return (*it).second;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
return data () [functor_type::element (i, size1_, j, size2_)];
#else
return reference (*this, i, j);
#endif
}
// Assignment
BOOST_UBLAS_INLINE
sparse_matrix &operator = (const sparse_matrix &m) {
// Too unusual semantic.
// BOOST_UBLAS_CHECK (this != &m, external_logic ());
if (this != &m) {
// Precondition for container relaxed as requested during review.
// BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
// BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
size1_ = m.size1_;
size2_ = m.size2_;
non_zeros_ = m.non_zeros_;
data () = m.data ();
}
return *this;
}
BOOST_UBLAS_INLINE
sparse_matrix &assign_temporary (sparse_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix &operator = (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (ae, non_zeros_));
#else
// return assign (self_type (ae, non_zeros_));
self_type temporary (ae, non_zeros_);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix &reset (const matrix_expression<AE> &ae) {
self_type temporary (ae, non_zeros_);
resize (temporary.size1 (), temporary.size2 (), non_zeros_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix& operator += (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (*this + ae, non_zeros_));
#else
// return assign (self_type (*this + ae, non_zeros_));
self_type temporary (*this + ae, non_zeros_);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix& operator -= (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (*this - ae, non_zeros_));
#else
// return assign (self_type (*this - ae, non_zeros_));
self_type temporary (*this - ae, non_zeros_);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
sparse_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
sparse_matrix& operator *= (const AT &at) {
matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
sparse_matrix& operator /= (const AT &at) {
matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (sparse_matrix &m) {
// Too unusual semantic.
// BOOST_UBLAS_CHECK (this != &m, external_logic ());
if (this != &m) {
// Precondition for container relaxed as requested during review.
// BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
// BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
// BOOST_UBLAS_CHECK (non_zeros_ == m.non_zeros_, bad_size ());
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (non_zeros_, m.non_zeros_);
data ().swap (m.data ());
}
}
#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS
BOOST_UBLAS_INLINE
friend void swap (sparse_matrix &m1, sparse_matrix &m2) {
m1.swap (m2);
}
#endif
// Element insertion and erasure
BOOST_UBLAS_INLINE
void insert (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (data ().find (functor_type::element (i, size1_, j, size2_)) == data ().end (), bad_index ());
data ().insert (data ().end (), std::pair<size_type, value_type> (functor_type::element (i, size1_, j, size2_), t));
}
BOOST_UBLAS_INLINE
void erase (size_type i, size_type j) {
// FIXME: shouldn't we use const_iterator_type here?
iterator_type it = data ().find (functor_type::element (i, size1_, j, size2_));
if (it == data ().end ())
return;
data ().erase (it);
}
BOOST_UBLAS_INLINE
void clear () {
data ().clear ();
}
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#ifdef BOOST_MSVC_STD_ITERATOR
typedef reverse_iterator_base1<const_iterator1, value_type, const_reference> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1, value_type, reference> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2, value_type, const_reference> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2, value_type, reference> reverse_iterator2;
#else
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
#endif
// Element lookup
// This function seems to be big. So we do not let the compiler inline it.
// BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
const_iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));
const_iterator_type it_end (data ().end ());
size_type index2 = size_type (-1);
#ifdef BOOST_UBLAS_BOUNDS_CHECK
size_type index1 = size_type (-1);
#endif
while (rank == 1 && it != it_end) {
index2 = functor_type::index2 ((*it).first, size1_, size2_);
#ifdef BOOST_UBLAS_BOUNDS_CHECK
index1 = functor_type::index1 ((*it).first, size1_, size2_);
BOOST_UBLAS_CHECK (index1 >= i || index2 >= j, internal_logic ());
#endif
if (direction > 0) {
if ((rank == 0 && index2 >= j) ||
(rank == 1 && index2 == j) ||
(i >= size1_))
break;
++ i;
} else /* if (direction < 0) */ {
if ((rank == 0 && index2 >= j) ||
(rank == 1 && index2 == j) ||
(i == 0))
break;
-- i;
}
it = data ().lower_bound (functor_type::address (i, size1_, j, size2_));
}
if (rank == 1 && index2 != j) {
if (direction > 0)
i = size1_;
else /* if (direction < 0) */
i = 0;
rank = 0;
}
return const_iterator1 (*this, rank, i, j, it);
}
// This function seems to be big. So we do not let the compiler inline it.
// BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));
iterator_type it_end (data ().end ());
size_type index2 = size_type (-1);
#ifdef BOOST_UBLAS_BOUNDS_CHECK
size_type index1 = size_type (-1);
#endif
while (rank == 1 && it != it_end) {
index2 = functor_type::index2 ((*it).first, size1_, size2_);
#ifdef BOOST_UBLAS_BOUNDS_CHECK
index1 = functor_type::index1 ((*it).first, size1_, size2_);
BOOST_UBLAS_CHECK (index1 >= i || index2 >= j, internal_logic ());
#endif
if (direction > 0) {
if ((rank == 0 && index2 >= j) ||
(rank == 1 && index2 == j) ||
(i >= size1_))
break;
++ i;
} else /* if (direction < 0) */ {
if ((rank == 0 && index2 >= j) ||
(rank == 1 && index2 == j) ||
(i == 0))
break;
-- i;
}
it = data ().lower_bound (functor_type::address (i, size1_, j, size2_));
}
if (rank == 1 && index2 != j) {
if (direction > 0)
i = size1_;
else /* if (direction < 0) */
i = 0;
rank = 0;
}
return iterator1 (*this, rank, i, j, it);
}
// This function seems to be big. So we do not let the compiler inline it.
// BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
const_iterator_type it (data ().lower_bound (functor_type::address (i, size1_, j, size2_)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -