⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 operation.hpp

📁 boost库提供标准的C++ API 配合dev c++使用,功能更加强大
💻 HPP
📖 第 1 页 / 共 2 页
字号:
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, packed_random_access_iterator_tag) {
        typedef typename E2::orientation_category orientation_category;
        return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
    }
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V &
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               V &v, bool init = true) {
        typedef typename V::value_type value_type;
        typedef typename E1::const_iterator::iterator_category iterator_category;

        if (init)
            v.assign (zero_vector<value_type> (e2 ().size2 ()));
#ifdef BOOST_UBLAS_TYPE_CHECK
        vector<value_type> cv (v);
        indexing_vector_assign (scalar_plus_assign<typename vector<value_type>::reference, value_type> (), cv, prod (e1, e2));
#endif
        axpy_prod (e1, e2, v, iterator_category ());
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (v, cv), internal_logic ());
#endif
        return v;
    }
    template<class V, class E1, class E2>
    BOOST_UBLAS_INLINE
    V
    axpy_prod (const vector_expression<E1> &e1,
               const matrix_expression<E2> &e2) {
        typedef V vector_type;

        vector_type v (e2 ().size2 ());
        // FIXME: needed for c_matrix?!
        // return axpy_prod (e1, e2, v, false);
        return axpy_prod (e1, e2, v, true);
    }

    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, F,
               dense_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#ifdef BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
        indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
#endif
        size_type size1 (e1 ().size1 ());
        size_type size2 (e1 ().size2 ());
        for (size_type i = 0; i < size1; ++ i)
            for (size_type j = 0; j < size2; ++ j)
                row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
        return m;
    }
    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, F,
               sparse_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;
        typedef F functor_type;

#ifdef BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
        indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
#endif
        typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
        typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
        while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression1_type::const_iterator2 it2 (it1.begin ());
            typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
            typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
            typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
            while (it2 != it2_end) {
                // row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
                matrix_row<expression2_type> mr (e2 (), it2.index2 ());
                typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
                typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
                while (itr != itr_end) {
                    if (functor_type ().other (it1.index1 (), itr.index ()))
                        m (it1.index1 (), itr.index ()) += *it2 * *itr;
                    ++ itr;
                }
                ++ it2;
            }
            ++ it1;
        }
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
        return m;
    }

    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, F,
               dense_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#ifdef BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
        indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
#endif
        size_type size1 (e2 ().size1 ());
        size_type size2 (e2 ().size2 ());
        for (size_type j = 0; j < size2; ++ j)
            for (size_type i = 0; i < size1; ++ i)
                column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
        return m;
    }
    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, F,
               sparse_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;
        typedef F functor_type;

#ifdef BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
        indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
#endif
        typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
        typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
        while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            typename expression2_type::const_iterator1 it1 (it2.begin ());
            typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
            typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
            typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
            while (it1 != it1_end) {
                // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
                matrix_column<expression1_type> mc (e1 (), it1.index1 ());
                typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
                typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
                while (itc != itc_end) {
                    if (functor_type ().other (itc.index (), it2.index2 ()))
                        m (itc.index (), it2.index2 ()) += *it1 * *itc;
                    ++ itc;
                }
                ++ it1;
            }
            ++ it2;
        }
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
        return m;
    }

    // Dispatcher
    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, F, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;
        typedef F functor_type;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return axpy_prod (e1, e2, m, functor_type (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               F) {
        typedef M matrix_type;
        typedef F functor_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        // FIXME: needed for c_matrix?!
        // return axpy_prod (e1, e2, m, functor_type (), false);
        return axpy_prod (e1, e2, m, functor_type (), true);
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2,
               M &m, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M
    axpy_prod (const matrix_expression<E1> &e1,
               const matrix_expression<E2> &e2) {
        typedef M matrix_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        // FIXME: needed for c_matrix?!
        // return axpy_prod (e1, e2, m, full (), false);
        return axpy_prod (e1, e2, m, full (), true);
    }

    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m, F,
              dense_proxy_tag, row_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#ifdef BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
        indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
#endif
        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
        for (size_type k = 0; k < size; ++ k) {
            vector<value_type> ce1 (column (e1 (), k));
            vector<value_type> re2 (row (e2 (), k));
            m.plus_assign (outer_prod (ce1, re2));
        }
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
        return m;
    }

    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m, F,
              dense_proxy_tag, column_major_tag) {
        typedef M matrix_type;
        typedef const E1 expression1_type;
        typedef const E2 expression2_type;
        typedef typename M::size_type size_type;
        typedef typename M::value_type value_type;

#ifdef BOOST_UBLAS_TYPE_CHECK
        matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
        indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
#endif
        size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
        for (size_type k = 0; k < size; ++ k) {
            vector<value_type> ce1 (column (e1 (), k));
            vector<value_type> re2 (row (e2 (), k));
            m.plus_assign (outer_prod (ce1, re2));
        }
#ifdef BOOST_UBLAS_TYPE_CHECK
        BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
        return m;
    }

    // Dispatcher
    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m, F, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;
        typedef F functor_type;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return opb_prod (e1, e2, m, functor_type (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2, class F>
    BOOST_UBLAS_INLINE
    M
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              F) {
        typedef M matrix_type;
        typedef F functor_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        // FIXME: needed for c_matrix?!
        // return opb_prod (e1, e2, m, functor_type (), false);
        return opb_prod (e1, e2, m, functor_type (), true);
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M &
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2,
              M &m, bool init = true) {
        typedef typename M::value_type value_type;
        typedef typename M::storage_category storage_category;
        typedef typename M::orientation_category orientation_category;

        if (init)
            m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
        return opb_prod (e1, e2, m, full (), storage_category (), orientation_category ());
    }
    template<class M, class E1, class E2>
    BOOST_UBLAS_INLINE
    M
    opb_prod (const matrix_expression<E1> &e1,
              const matrix_expression<E2> &e2) {
        typedef M matrix_type;

        matrix_type m (e1 ().size1 (), e2 ().size2 ());
        // FIXME: needed for c_matrix?!
        // return opb_prod (e1, e2, m, full (), false);
        return opb_prod (e1, e2, m, full (), true);
    }

}}}

#endif


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -