📄 operation.hpp
字号:
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag) {
typedef typename E2::orientation_category orientation_category;
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename E1::const_iterator::iterator_category iterator_category;
if (init)
v.assign (zero_vector<value_type> (e2 ().size2 ()));
#ifdef BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
indexing_vector_assign (scalar_plus_assign<typename vector<value_type>::reference, value_type> (), cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, iterator_category ());
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (v, cv), internal_logic ());
#endif
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e2 ().size2 ());
// FIXME: needed for c_matrix?!
// return axpy_prod (e1, e2, v, false);
return axpy_prod (e1, e2, v, true);
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#ifdef BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
#endif
size_type size1 (e1 ().size1 ());
size_type size2 (e1 ().size2 ());
for (size_type i = 0; i < size1; ++ i)
for (size_type j = 0; j < size2; ++ j)
row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F,
sparse_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
typedef F functor_type;
#ifdef BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
#endif
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
// row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
while (itr != itr_end) {
if (functor_type ().other (it1.index1 (), itr.index ()))
m (it1.index1 (), itr.index ()) += *it2 * *itr;
++ itr;
}
++ it2;
}
++ it1;
}
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F,
dense_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#ifdef BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
#endif
size_type size1 (e2 ().size1 ());
size_type size2 (e2 ().size2 ());
for (size_type j = 0; j < size2; ++ j)
for (size_type i = 0; i < size1; ++ i)
column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F,
sparse_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
typedef F functor_type;
#ifdef BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
#endif
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
// column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
matrix_column<expression1_type> mc (e1 (), it1.index1 ());
typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
while (itc != itc_end) {
if (functor_type ().other (itc.index (), it2.index2 ()))
m (itc.index (), it2.index2 ()) += *it1 * *itc;
++ itc;
}
++ it1;
}
++ it2;
}
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
return m;
}
// Dispatcher
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
typedef F functor_type;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return axpy_prod (e1, e2, m, functor_type (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
F) {
typedef M matrix_type;
typedef F functor_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME: needed for c_matrix?!
// return axpy_prod (e1, e2, m, functor_type (), false);
return axpy_prod (e1, e2, m, functor_type (), true);
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME: needed for c_matrix?!
// return axpy_prod (e1, e2, m, full (), false);
return axpy_prod (e1, e2, m, full (), true);
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#ifdef BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign (scalar_assign<typename matrix<value_type, row_major>::reference, value_type> (), cm, prod (e1, e2), row_major_tag ());
#endif
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
for (size_type k = 0; k < size; ++ k) {
vector<value_type> ce1 (column (e1 (), k));
vector<value_type> re2 (row (e2 (), k));
m.plus_assign (outer_prod (ce1, re2));
}
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F,
dense_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#ifdef BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign (scalar_assign<typename matrix<value_type, column_major>::reference, value_type> (), cm, prod (e1, e2), column_major_tag ());
#endif
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
for (size_type k = 0; k < size; ++ k) {
vector<value_type> ce1 (column (e1 (), k));
vector<value_type> re2 (row (e2 (), k));
m.plus_assign (outer_prod (ce1, re2));
}
#ifdef BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (equals (m, cm), internal_logic ());
#endif
return m;
}
// Dispatcher
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, F, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
typedef F functor_type;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return opb_prod (e1, e2, m, functor_type (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2, class F>
BOOST_UBLAS_INLINE
M
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
F) {
typedef M matrix_type;
typedef F functor_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME: needed for c_matrix?!
// return opb_prod (e1, e2, m, functor_type (), false);
return opb_prod (e1, e2, m, functor_type (), true);
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return opb_prod (e1, e2, m, full (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME: needed for c_matrix?!
// return opb_prod (e1, e2, m, full (), false);
return opb_prod (e1, e2, m, full (), true);
}
}}}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -