📄 vector_of_vector.hpp
字号:
//
// Copyright (c) 2003
// Gunter Winkler, Joerg Walter
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef BOOST_UBLAS_VECTOR_OF_VECTOR_H
#define BOOST_UBLAS_VECTOR_OF_VECTOR_H
#include <boost/numeric/ublas/config.hpp>
#include <boost/numeric/ublas/storage_sparse.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
// Array based sparse matrix class
template<class T, class F, class A>
class generalized_vector_of_vector:
public matrix_expression<generalized_vector_of_vector<T, F, A> > {
public:
#ifndef BOOST_UBLAS_NO_PROXY_SHORTCUTS
BOOST_UBLAS_USING matrix_expression<generalized_vector_of_vector<T, F, A> >::operator ();
#endif
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
// typedef const T &const_reference;
typedef typename type_traits<T>::const_reference const_reference;
#if ! defined (BOOST_UBLAS_STRICT_STORAGE_SPARSE) && ! defined (BOOST_UBLAS_STRICT_VECTOR_SPARSE)
typedef T &reference;
#elif defined (BOOST_UBLAS_STRICT_VECTOR_SPARSE)
typedef sparse_vector_element<typename A::value_type> reference;
#endif
typedef const T *const_pointer;
typedef T *pointer;
typedef A array_type;
typedef const A const_array_type;
typedef F functor_type;
typedef const generalized_vector_of_vector<T, F, A> const_self_type;
typedef generalized_vector_of_vector<T, F, A> self_type;
#ifndef BOOST_UBLAS_CT_REFERENCE_BASE_TYPEDEFS
typedef const matrix_const_reference<const_self_type> const_closure_type;
#else
typedef const matrix_reference<const_self_type> const_closure_type;
#endif
typedef matrix_reference<self_type> closure_type;
typedef typename A::value_type vector_data_value_type;
typedef typename A::const_iterator vector_const_iterator_type;
typedef typename A::iterator vector_iterator_type;
typedef typename A::value_type::const_iterator const_iterator_type;
typedef typename A::value_type::iterator iterator_type;
typedef sparse_tag storage_category;
typedef typename F::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
generalized_vector_of_vector ():
size1_ (0), size2_ (0), non_zeros_ (0), data_ (1) {
for (size_type i = 0; i < functor_type::size1 (size1_, size2_); ++ i)
static_cast<vector_data_value_type &> (data_ [i]).resize (functor_type::size2 (size1_, size2_));
data_ [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector (size_type size1, size_type size2, size_type non_zeros = 0):
size1_ (size1), size2_ (size2), non_zeros_ (non_zeros), data_ (functor_type::size1 (size1_, size2_) + 1) {
for (size_type i = 0; i < functor_type::size1 (size1_, size2_); ++ i)
static_cast<vector_data_value_type &> (data_ [i]).resize (functor_type::size2 (size1_, size2_));
data_ [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector (const generalized_vector_of_vector &m):
size1_ (m.size1_), size2_ (m.size2_), non_zeros_ (m.non_zeros_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector (const matrix_expression<AE> &ae, size_type non_zeros = 0):
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), non_zeros_ (non_zeros), data_ (functor_type::size1 (size1_, size2_) + 1) {
for (size_type i = 0; i < functor_type::size1 (size1_, size2_); ++ i)
static_cast<vector_data_value_type &> (data_ [i]).resize (functor_type::size2 (size1_, size2_));
data_ [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type non_zeros () const {
size_type non_zeros = 0;
for (vector_const_iterator_type itv = data_ ().begin (); itv != data_ ().end (); ++ itv)
non_zeros += (*itv).size ();
return non_zeros;
}
BOOST_UBLAS_INLINE
const_array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, size_type non_zeros = 0) {
size1_ = size1;
size2_ = size2;
non_zeros_ = non_zeros;
data ().resize (functor_type::size1 (size1_, size2_) + 1);
for (size_type i = 0; i < functor_type::size1 (size1_, size2_); ++ i)
static_cast<vector_data_value_type &> (data_ [i]).resize (functor_type::size2 (size1_, size2_));
data () [functor_type::size1 (size1_, size2_)] = vector_data_value_type ();
}
// Proxy support
#ifdef BOOST_UBLAS_STRICT_VECTOR_SPARSE
pointer find_element (size_type i, size_type j) {
vector_iterator_type itv (data ().find (functor_type::element1 (i, size1_, j, size2_)));
if (itv == data ().end () || itv.index () != functor_type::element1 (i, size1_, j, size2_))
return 0;
iterator_type it (static_cast<vector_data_value_type &> (*itv).find (functor_type::element2 (i, size1_, j, size2_)));
if (it == static_cast<vector_data_value_type &> (*itv).end () || it.index () != functor_type::element2 (i, size1_, j, size2_))
return 0;
return &static_cast<value_type &> (*it);
}
#endif
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
vector_const_iterator_type itv (data ().find (functor_type::element1 (i, size1_, j, size2_)));
if (itv == data ().end () || itv.index () != functor_type::element1 (i, size1_, j, size2_))
return zero_;
const_iterator_type it (static_cast<const vector_data_value_type &> (*itv).find (functor_type::element2 (i, size1_, j, size2_)));
if (it == static_cast<const vector_data_value_type &> (*itv).end () || it.index () != functor_type::element2 (i, size1_, j, size2_))
return zero_;
return static_cast<const value_type &> (*it);
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
return data () [functor_type::element1 (i, size1_, j, size2_)] [functor_type::element2 (i, size1_, j, size2_)];
#else
return reference (this->data () [functor_type::element1 (i, size1_, j, size2_)], functor_type::element2 (i, size1_, j, size2_));
#endif
}
// Assignment
BOOST_UBLAS_INLINE
generalized_vector_of_vector &operator = (const generalized_vector_of_vector &m) {
// Too unusual semantic.
// BOOST_UBLAS_CHECK (this != &m, external_logic ());
if (this != &m) {
// Precondition for container relaxed as requested during review.
// BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
// BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
size1_ = m.size1_;
size2_ = m.size2_;
non_zeros_ = m.non_zeros_;
data () = m.data ();
}
return *this;
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector &assign_temporary (generalized_vector_of_vector &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &operator = (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (ae, non_zeros_));
#else
// return assign (self_type (ae, non_zeros_));
self_type temporary (ae, non_zeros_);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &reset (const matrix_expression<AE> &ae) {
self_type temporary (ae, non_zeros_);
resize (temporary.size1 (), temporary.size2 (), non_zeros_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator += (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (*this + ae, non_zeros_));
#else
// return assign (self_type (*this + ae, non_zeros_));
self_type temporary (*this + ae, non_zeros_);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_plus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator -= (const matrix_expression<AE> &ae) {
#ifdef BOOST_UBLAS_MUTABLE_TEMPORARY
return assign_temporary (self_type (*this - ae, non_zeros_));
#else
// return assign (self_type (*this - ae, non_zeros_));
self_type temporary (*this - ae, non_zeros_);
return assign_temporary (temporary);
#endif
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign (scalar_minus_assign<reference, BOOST_UBLAS_TYPENAME AE::value_type> (), *this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator *= (const AT &at) {
matrix_assign_scalar (scalar_multiplies_assign<reference, AT> (), *this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator /= (const AT &at) {
matrix_assign_scalar (scalar_divides_assign<reference, AT> (), *this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (generalized_vector_of_vector &m) {
// Too unusual semantic.
// BOOST_UBLAS_CHECK (this != &m, external_logic ());
if (this != &m) {
// Precondition for container relaxed as requested during review.
// BOOST_UBLAS_CHECK (size1_ == m.size1_, bad_size ());
// BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
// BOOST_UBLAS_CHECK (non_zeros_ == m.non_zeros_, bad_size ());
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (non_zeros_, m.non_zeros_);
data ().swap (m.data ());
}
}
#ifndef BOOST_UBLAS_NO_MEMBER_FRIENDS
BOOST_UBLAS_INLINE
friend void swap (generalized_vector_of_vector &m1, generalized_vector_of_vector &m2) {
m1.swap (m2);
}
#endif
// Sorting
void sort () {
vector_iterator_type itv (data ().begin ());
vector_iterator_type itv_end (data ().end ());
while (itv != itv_end) {
(*itv).sort ();
++ itv;
}
}
// Element insertion and erasure
BOOST_UBLAS_INLINE
void insert (size_type i, size_type j, const_reference t) {
vector_iterator_type itv (data ().find (functor_type::element1 (i, size1_, j, size2_)));
if (itv == data ().end ()) {
data ().insert (functor_type::element1 (i, size1_, j, size2_), vector_data_value_type (functor_type::size2 (size1_, size2_)));
itv = data ().find (functor_type::element1 (i, size1_, j, size2_));
}
// FIXME: should be allowed for coordinate_vector.
// BOOST_UBLAS_CHECK (static_cast<vector_data_value_type &> (*itv).find (functor_type::element2 (i, size1_, j, size2_)) == static_cast<vector_data_value_type &> (*itv).end (), bad_index ());
static_cast<vector_data_value_type &> (*itv).insert (functor_type::element2 (i, size1_, j, size2_), t);
}
BOOST_UBLAS_INLINE
void erase (size_type i, size_type j) {
vector_iterator_type itv (data ().find (functor_type::element1 (i, size1_, j, size2_)));
if (itv == data ().end ())
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -