📄 nf_test1.m
字号:
%***Novelty Detection
%***Testing nf trained by 'nf_train'
%***Iput File: 1.prepared data file
% or 2.Abaqus Data file '*.dat'
clear;clc;
%=====below can be changed by user====
sample_test=500; %when data_from=1, this number is decided based on the size of prepared data file
data_from=1;
data_file='DF_MS9B100.txt'; %%when data_from=1:get data from prepared data file
%data_file='ksm1MScase8B.dat'; %%when data_from=2:get data from Abaqus Data file '*.dat'
%load netwoek trained before by nf_train.m
nf_trained=load('nftest_ksm1MS.mat');
%=====above can be changed by user====
novelty_filter=nf_trained.novelty_filter;
f=nf_trained.f;
alpha=nf_trained.alpha;
noise=nf_trained.noise;
inout_node=nf_trained.inout_node;
sample_train=nf_trained.sample_train;
lamda_train=zeros(1,sample_train);
lamda_test=zeros(1,sample_test);
for i=1:1:inout_node
m=mean(f(i,:));
y(i,:)=(f(i,:)-m)*alpha+m;
end
y1 = sim(novelty_filter,f);
for j=1:1:sample_train
sum=0.0;
for i=1:1:inout_node
sum=sum+(y1(i,j)-y(i,j))^2.0;
end
lamda_train(j)=sqrt(sum);
end
threshold=mean(lamda_train)+4*std(lamda_train);
%***read test data from a prepared data file
if data_from==1 %1.get test data from a prepared data file
fid=fopen(data_file,'r');
ft=fscanf(fid,'%g',[inout_node,sample_test]);
%read in order of column by column,
%element number in a column is "inout_node"
%total number of columns is "sample_test"
fclose(fid);
end %data_from=1:get test data ft from prepared data file
if data_from==2
%***read freq from abaqus.dat file and then add noise to form freq set
number=-1;
fin=fopen(data_file,'r');
while number<=0
line=fgetl(fin);
matches=findstr(line,'CYCLES');
number=length(matches);
end
line=fgetl(fin);
line;
for i=1:1:inout_node
mode=fscanf(fin,'%d',1);
x=fscanf(fin,'%g', 2);
freq(i)=fscanf(fin,'%g', 1);
z=fscanf(fin,'%g', 2);
end
fclose(fin);
freq=freq'; %change row to column
%add noise to freq to form data set
for i=1:1:inout_node
ranf=sprandn([1:sample_test]); maxf=max(abs(ranf));
ranf=ranf/maxf;
for j=1:1:sample_test
ft(i,j)=freq(i)+noise*ranf(j)*freq(i);
end
end
%******ft is inout_node rows and samlp_test columns***********************************
end %data_from=2:setup test data ft from Abaqus data file
%*****************************************
for i=1:1:inout_node
mt=mean(ft(i,:));
yt(i,:)=(ft(i,:)-mt)*alpha+mt;
end
yt1=sim(novelty_filter,ft);
for j=1:1:sample_test
sum=0.0;
for i=1:1:inout_node
sum=sum+(yt1(i,j)-yt(i,j))^2.0;
end
lamda_test(j)=sqrt(sum);
end
lamda=[lamda_train,lamda_test];
%ploting
figure(1);
%subplot(2,1,1);
plot(lamda,'b');
hold on;
plot([1,sample_train+sample_test],[threshold threshold],'-.k');
plot([sample_train sample_train],[0.8*min(lamda) 1.2*max(lamda)],'-.k');
xlabel('Training / testing data','fontname','times new roman','fontsize',16,'fontweight','bold');
ylabel('Novelty index','fontname','times new roman','fontsize',16,'fontweight','bold');
hold off;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -