📄 http:^^www.cs.unm.edu^~high^future.html
字号:
Date: Wed, 15 Jan 1997 02:13:04 GMTServer: NCSA/1.4.2Content-type: text/htmlLast-modified: Tue, 27 Aug 1996 20:14:27 GMTContent-length: 2489<h1>Future Directions</h1><a name="Contents"></a><ul><li><!WA0><a href="#EIEIO">Engines for Emergent Intelligence</a></li><li><!WA1><a href="#Genetic">Evolutionary Techniques</a></li></ul><HR> <!-----------------------------------------------------------><h2><a name="EIEIO">Engines for Emergent Intelligence</a><!- (return to <!WA2><a href="#Contents"RBContents</aRB) ></h2>Attempts to create machines exhibiting intelligent behavior can be roughlysorted along a continuum between symbolic artificial intelligence (SAI) andconnectionist artificial intelligence (CAI). <p>Symbolic AI is atop-down approach to the engineering of intelligent behavior. The physical-symbol hypothesis of Newell and Simon<!WA3><a href="http://www.cs.unm.edu/~high/et001.html">(1972)</a> suggests (correctly, I believe) that humanthought can be fully described in terms of the manipulation of abstractsymbols, embodied as states in the physical world. The common (mis)interpretation(incorrect, I believe) is that symbols are discrete entities like thosefound in computer programming languages (e.g. OBJECT = BIRD, COLOR = BLUE).This is a bias due to both the computer scientist's special perceptual system but also the basic human perceptual system.That mind has a physical basis is apparent.That this physical basis can be construed as a processing of physicalsymbols seems acceptable, but only if we allow a loosedefinition of the word "symbol."<p><!- The various forms of connectionism suggest a bottom-up approach.->more...<ul><li>the importance of learning</li><li>the brittle, unlearning nature of discrete symbols</li><li>the learning power of connectionism</li></ul><p><ul><li>the importance of structural composabiliy</li><li>the uncomposability of connectionism</li></ul><p><ul><li>the emergent synthetic alternative</li></ul><ol></ol><HR> <!-----------------------------------------------------------><h2><a name="Genetic">Evolutionary Techniques</a><!- (return to <!WA4><a href="#Contents"RBContents</aRB) ></h2><ul><li><!-a href="ga002.html"->Genetic Algorithms versus Artificial Evolution</a>,</li><li><!-a href="ga001.html"->Evolving complex computational systems</a>, <ul> <li>Harvey's method for evolving neural networks (NN)</li> <li>Gruau's method for evolving NN construction programs</li> <li>Koza's Genetic "Programming" </li> <li>learning classifier systems</li> </ul></li><li><!-a href="ga003.html"->Complex Genotype to Phenotype Mappings</a></li></ul>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -