⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 http:^^www.cs.wisc.edu^~deboor^ftpreadme.html

📁 This data set contains WWW-pages collected from computer science departments of various universities
💻 HTML
📖 第 1 页 / 共 3 页
字号:
Date: Tue, 05 Nov 1996 20:37:31 GMTServer: NCSA/1.5Content-type: text/htmlLast-modified: Mon, 28 Oct 1996 18:11:11 GMTContent-length: 28360<HTML><HEAD><TITLE>Content of the read.me file at ftp.cs.wisc.edu/Approx </TITLE></HEAD><BODY bgcolor="FFFFFF"><H2><ST>Content of the <tt>read.me</tt> file at ftp.cs.wisc.edu/Approx <ST></H2><H3><ST> all icons on this page are clickable </ST></H3>These are the files that can be obtained by anonymous<!WA0><!WA0><!WA0><!WA0><A HREF="ftp://ftp.cs.wisc.edu/Approx"><!WA1><!WA1><!WA1><!WA1><img align=bottom src="http://www.cs.wisc.edu/~deboor/ftp.gif"></A>from <TT>ftp.cs.wisc.edu/Approx</TT>.The files are postscript, and are also available as compress(ed) files, asindicated by the subscript <TT>.Z</TT>, to be <TT>uncompress</TT>(ed) before using.<BR>If you have trouble because of file contamination, specify <TT>binary</TT>  as your<BR>first command in <TT>ftp</TT>.<BR>The files are in order of increasing age.<BR><P><DD><!WA2><!WA2><!WA2><!WA2><A href="ftp://ftp.cs.wisc.edu/Approx/bmr.ps"><!WA3><!WA3><!WA3><!WA3><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>bmr.ps</TT>,   <!WA4><!WA4><!WA4><!WA4><A href="ftp://ftp.cs.wisc.edu/Approx/bmr.ps.Z"><!WA5><!WA5><!WA5><!WA5><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>bmr.ps.Z</TT> :=<BR>Asymptotically Optimal Approximation and Numerical Solutions of Differential <BR>Equations<BR>Martin D. Buhmann, Charles A. Micchelli, Amos Ron}<BR>October 1996<BR><P><DD><!WA6><!WA6><!WA6><!WA6><A href="ftp://ftp.cs.wisc.edu/Approx/cg.ps"><!WA7><!WA7><!WA7><!WA7><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>cg.ps</TT>,   <!WA8><!WA8><!WA8><!WA8><A href="ftp://ftp.cs.wisc.edu/Approx/cg.ps.Z"><!WA9><!WA9><!WA9><!WA9><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>cg.ps.Z</TT> :=<BR>Tight compactly supported wavelet frames of arbitrarily high smoothness<BR>Karlheinz Gr\"ochenig, Amos  Ron<BR>September 1996<BR><P><DD><!WA10><!WA10><!WA10><!WA10><A href="ftp://ftp.cs.wisc.edu/Approx/BDR4.ps"><!WA11><!WA11><!WA11><!WA11><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>BDR4.ps</TT>,   <!WA12><!WA12><!WA12><!WA12><A href="ftp://ftp.cs.wisc.edu/Approx/BDR4.ps.Z"><!WA13><!WA13><!WA13><!WA13><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>BDR4.ps.Z</TT> :=<BR>Approximation orders of FSI spaces in $L_2(\Rd)$<BR>Carl de Boor, Ron DeVore, and Amos Ron<BR>March 1996<BR>additional references added June-July 1996<BR>referees' comments incorporated Aug/Sep 1996<BR>to appear in \CA<BR><P><DD><!WA14><!WA14><!WA14><!WA14><A href="ftp://ftp.cs.wisc.edu/Approx/tight.ps"><!WA15><!WA15><!WA15><!WA15><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>tight.ps</TT>,   <!WA16><!WA16><!WA16><!WA16><A href="ftp://ftp.cs.wisc.edu/Approx/tight.ps.Z"><!WA17><!WA17><!WA17><!WA17><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>tight.ps.Z</TT> :=<BR>Compactly supported tight affine spline frames in $L_2(\Rd)$<BR>Amos Ron and Zuowei Shen<BR>February 1996<BR>to appear in Math. Comp.<BR><P><DD><!WA18><!WA18><!WA18><!WA18><A href="ftp://ftp.cs.wisc.edu/Approx/multiw.ps"><!WA19><!WA19><!WA19><!WA19><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>multiw.ps</TT>,   <!WA20><!WA20><!WA20><!WA20><A href="ftp://ftp.cs.wisc.edu/Approx/multiw.ps.Z"><!WA21><!WA21><!WA21><!WA21><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>multiw.ps.Z</TT> :=<BR>Stability and independence of the shifts of finitely many refinable<BR>functions<BR>Thomas A. Hogan<BR>January 1996<BR><P><DD><!WA22><!WA22><!WA22><!WA22><A href="ftp://ftp.cs.wisc.edu/Approx/affine.ps"><!WA23><!WA23><!WA23><!WA23><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>affine.ps</TT>,   <!WA24><!WA24><!WA24><!WA24><A href="ftp://ftp.cs.wisc.edu/Approx/affine.ps.Z"><!WA25><!WA25><!WA25><!WA25><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>affine.ps.Z</TT> :=<BR>Affine systems in $L_2(\Rd)$: the analysis of the analysis operator<BR>Amos Ron, Zuowei Shen<BR>December 1995<BR><P><DD><!WA26><!WA26><!WA26><!WA26><A href="ftp://ftp.cs.wisc.edu/Approx/zerocount.ps"><!WA27><!WA27><!WA27><!WA27><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>zerocount.ps</TT>,   <!WA28><!WA28><!WA28><!WA28><A href="ftp://ftp.cs.wisc.edu/Approx/zerocount.ps.Z"><!WA29><!WA29><!WA29><!WA29><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>zerocount.ps.Z</TT> :=<BR>The multiplicity of a spline zero<BR>Carl de Boor<BR>December 1995/ January 96 (reflect referee's comments)<BR>to appear in Ann. Numer.Math.<BR><P><DD><!WA30><!WA30><!WA30><!WA30><A href="ftp://ftp.cs.wisc.edu/Approx/ker2.ps"><!WA31><!WA31><!WA31><!WA31><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>ker2.ps</TT>,   <!WA32><!WA32><!WA32><!WA32><A href="ftp://ftp.cs.wisc.edu/Approx/ker2.ps.Z"><!WA33><!WA33><!WA33><!WA33><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>ker2.ps.Z</TT> :=<BR>On ascertaining inductively the dimension of the joint kernel <BR>of certain commuting linear operators. II<BR>Carl de Boor, Amos Ron, Zuowei Shen<BR>May 1995<BR>to appear in Adv. in Math.<BR><P><DD><!WA34><!WA34><!WA34><!WA34><A href="ftp://ftp.cs.wisc.edu/Approx/cdr.ps"><!WA35><!WA35><!WA35><!WA35><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>cdr.ps</TT>,   <!WA36><!WA36><!WA36><!WA36><A href="ftp://ftp.cs.wisc.edu/Approx/cdr.ps.Z"><!WA37><!WA37><!WA37><!WA37><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>cdr.ps.Z</TT> :=<BR>How smooth is the smoothest function in a given refinable space?<BR>Albert Cohen, Ingrid Daubechies, Amos Ron<BR>May 1995<BR>to appear in Applied and Computational Harmonic Analysis<BR><P><DD><!WA38><!WA38><!WA38><!WA38><A href="ftp://ftp.cs.wisc.edu/Approx/perturb.ps"><!WA39><!WA39><!WA39><!WA39><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>perturb.ps</TT>,   <!WA40><!WA40><!WA40><!WA40><A href="ftp://ftp.cs.wisc.edu/Approx/perturb.ps.Z"><!WA41><!WA41><!WA41><!WA41><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>perturb.ps.Z</TT> :=<BR>Approximation in $L_p(\Rd)$ from spaces spanned by the perturbed integer<BR>translates of a radial basis function<BR>Michael J. Johnson<BR>May 1995<BR><P><DD><!WA42><!WA42><!WA42><!WA42><A href="ftp://ftp.cs.wisc.edu/Approx/sauerxu.ps"><!WA43><!WA43><!WA43><!WA43><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>sauerxu.ps</TT>,   <!WA44><!WA44><!WA44><!WA44><A href="ftp://ftp.cs.wisc.edu/Approx/sauerxu.ps.Z"><!WA45><!WA45><!WA45><!WA45><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>sauerxu.ps.Z</TT> :=<BR>On the Sauer-Xu formula for the error in multivariate polynomial interpolation;<BR>Carl de Boor<BR>March 1995<BR>to appear in Math.Comp.<BR><P><DD><!WA46><!WA46><!WA46><!WA46><A href="ftp://ftp.cs.wisc.edu/Approx/frame2.ps"><!WA47><!WA47><!WA47><!WA47><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>frame2.ps</TT>,   <!WA48><!WA48><!WA48><!WA48><A href="ftp://ftp.cs.wisc.edu/Approx/frame2.ps.Z"><!WA49><!WA49><!WA49><!WA49><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>frame2.ps.Z</TT> :=<BR>Gramian analysis of affine bases and affine frames<BR>Amos Ron and Zuowei Shen<BR>March 1995<BR>\TexasVIIIw; 375--382;<BR><P><DD><!WA50><!WA50><!WA50><!WA50><A href="ftp://ftp.cs.wisc.edu/Approx/multdvdf.ps"><!WA51><!WA51><!WA51><!WA51><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>multdvdf.ps</TT>,   <!WA52><!WA52><!WA52><!WA52><A href="ftp://ftp.cs.wisc.edu/Approx/multdvdf.ps.Z"><!WA53><!WA53><!WA53><!WA53><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>multdvdf.ps.Z</TT> :=<BR>A multivariate divided difference<BR>Carl de Boor<BR>March 1995<BR>\TexasVIIIa; 87--96;<BR><P><DD><!WA54><!WA54><!WA54><!WA54><A href="ftp://ftp.cs.wisc.edu/Approx/smoothwav.ps"><!WA55><!WA55><!WA55><!WA55><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>smoothwav.ps</TT>,   <!WA56><!WA56><!WA56><!WA56><A href="ftp://ftp.cs.wisc.edu/Approx/smoothwav.ps.Z"><!WA57><!WA57><!WA57><!WA57><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>smoothwav.ps.Z</TT> :=<BR>Smooth refinable functions provide good approximation orders<BR>Amos Ron<BR>February 1995<BR>to appear in SIAM J. Math. Anal.<BR><P><DD><!WA58><!WA58><!WA58><!WA58><A href="ftp://ftp.cs.wisc.edu/Approx/stabindep_texasviii.ps"><!WA59><!WA59><!WA59><!WA59><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>stabindep_texasviii.ps</TT>,   <!WA60><!WA60><!WA60><!WA60><A href="ftp://ftp.cs.wisc.edu/Approx/stabindep_texasviii.ps.Z"><!WA61><!WA61><!WA61><!WA61><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>stabindep_texasviii.ps.Z</TT> :=<BR>Stability and independence of the shifts of a multivariate refinable function<BR>Tom Hogan<BR>February 1995<BR>\TexasVIIIw; 159--166;<BR><P><DD><!WA62><!WA62><!WA62><!WA62><A href="ftp://ftp.cs.wisc.edu/Approx/stabindep.ps"><!WA63><!WA63><!WA63><!WA63><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>stabindep.ps</TT>,   <!WA64><!WA64><!WA64><!WA64><A href="ftp://ftp.cs.wisc.edu/Approx/stabindep.ps.Z"><!WA65><!WA65><!WA65><!WA65><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>stabindep.ps.Z</TT> :=<BR>Stability and independence of the shifts of a multivariate refinable function<BR>Tom Hogan<BR>February 1995<BR><P><DD><!WA66><!WA66><!WA66><!WA66><A href="ftp://ftp.cs.wisc.edu/Approx/upbound.ps"><!WA67><!WA67><!WA67><!WA67><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>upbound.ps</TT>,   <!WA68><!WA68><!WA68><!WA68><A href="ftp://ftp.cs.wisc.edu/Approx/upbound.ps.Z"><!WA69><!WA69><!WA69><!WA69><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>upbound.ps.Z</TT> :=<BR>An upper bound on the approximation power of principal shift-invariant spaces<BR>Michael J. Johnson<BR>December 1994<BR>Constructive Approximation, to appear<BR><P><DD><!WA70><!WA70><!WA70><!WA70><A href="ftp://ftp.cs.wisc.edu/Approx/lowbound.ps"><!WA71><!WA71><!WA71><!WA71><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>lowbound.ps</TT>,   <!WA72><!WA72><!WA72><!WA72><A href="ftp://ftp.cs.wisc.edu/Approx/lowbound.ps.Z"><!WA73><!WA73><!WA73><!WA73><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>lowbound.ps.Z</TT> :=<BR>On the approximation power of principal shift-invariant subspaces of $L_p(R^d)$<BR>Michael J. Johnson<BR>December 1994<BR><P><DD><!WA74><!WA74><!WA74><!WA74><A href="ftp://ftp.cs.wisc.edu/Approx/wh.ps"><!WA75><!WA75><!WA75><!WA75><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>wh.ps</TT>,   <!WA76><!WA76><!WA76><!WA76><A href="ftp://ftp.cs.wisc.edu/Approx/wh.ps.Z"><!WA77><!WA77><!WA77><!WA77><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>wh.ps.Z</TT> :=<BR>Weyl-Heisenberg frames and Riesz bases in $L_2(\Rd)$<BR>Amos Ron  and  Zuowei Shen<BR>October 1994<BR>to appear in Duke Math. J.<BR><P><DD><!WA78><!WA78><!WA78><!WA78><A href="ftp://ftp.cs.wisc.edu/Approx/symmetries.ps"><!WA79><!WA79><!WA79><!WA79><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>symmetries.ps</TT>,   <!WA80><!WA80><!WA80><!WA80><A href="ftp://ftp.cs.wisc.edu/Approx/symmetries.ps.Z"><!WA81><!WA81><!WA81><!WA81><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>symmetries.ps.Z</TT> :=<BR>Symmetries of linear functionals<BR>Shayne Waldron<BR>October 1994<BR><P><DD><!WA82><!WA82><!WA82><!WA82><A href="ftp://ftp.cs.wisc.edu/Approx/hardy.ps"><!WA83><!WA83><!WA83><!WA83><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>hardy.ps</TT>,   <!WA84><!WA84><!WA84><!WA84><A href="ftp://ftp.cs.wisc.edu/Approx/hardy.ps.Z"><!WA85><!WA85><!WA85><!WA85><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>hardy.ps.Z</TT> :=<BR>A multivariate form of Hardy's inequality and $L_p$-error bounds for<BR>multivariate Lagrange interpolation schemes<BR>Shayne Waldron<BR>August 1994<BR><P><DD><!WA86><!WA86><!WA86><!WA86><A href="ftp://ftp.cs.wisc.edu/Approx/lift.ps"><!WA87><!WA87><!WA87><!WA87><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>lift.ps</TT>,   <!WA88><!WA88><!WA88><!WA88><A href="ftp://ftp.cs.wisc.edu/Approx/lift.ps.Z"><!WA89><!WA89><!WA89><!WA89><img alg="o" src="http://www.cs.wisc.edu/~deboor/redball.gif"></A><TT>lift.ps.Z</TT> :=<BR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -