⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 http:^^www.cs.wisc.edu^~amos^amosreadme.html

📁 This data set contains WWW-pages collected from computer science departments of various universities
💻 HTML
字号:
Date: Tue, 05 Nov 1996 00:40:57 GMTServer: NCSA/1.5Content-type: text/htmlLast-modified: Mon, 28 Oct 1996 18:31:46 GMTContent-length: 10519<HTML><HEAD><TITLE> Selected articles of Amos Ron</TITLE></HEAD><body background=backs/paper.jpg text=#0000cc  link=#FF3300 vlink=#993333><BR><H2>Selected articles of <ST>Amos Ron</ST></H2><H3><ST> all icons on this page are clickable </ST></H3>each article listed below can be viewed on-line by clicking the red ballnext to it. Or course, all articles are downloadable. They can alsoftp'ed<!WA0><!WA0><!WA0><!WA0><A HREF="ftp://ftp.cs.wisc.edu/Approx"><!WA1><!WA1><!WA1><!WA1><img align=middle src="http://www.cs.wisc.edu/~amos/acimages/smallftp.gif"></A>from <TT>ftp.cs.wisc.edu/Approx</TT>, but that's a silly option, if youare already here.The files are postscript, and are also available as compress(ed) files, asindicated by the subscript <TT>.Z</TT>, to be <TT>uncompress</TT>(ed) before using.<BR>The files are in order of increasing age.<BR><P><DD><!WA2><!WA2><!WA2><!WA2><A href="ftp://ftp.cs.wisc.edu/Approx/BDR4.ps"><!WA3><!WA3><!WA3><!WA3><img alg="o"src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>BDR4.ps</TT>,   <!WA4><!WA4><!WA4><!WA4><A href="ftp://ftp.cs.wisc.edu/Approx/BDR4.ps.Z"><!WA5><!WA5><!WA5><!WA5><imgalg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>BDR4.ps.Z</TT> :=<BR>Approximation orders of FSI spaces in $L_2(\Rd)$<BR>Carl de Boor, Ron DeVore, and Amos Ron<BR>March 1996<BR>additional references added June 1996<BR>submitted to Constructive Approximation<BR><P><DD><!WA6><!WA6><!WA6><!WA6><A href="ftp://ftp.cs.wisc.edu/Approx/tight.ps"><!WA7><!WA7><!WA7><!WA7><img alg="o"src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>tight.ps</TT>,   <!WA8><!WA8><!WA8><!WA8><A href="ftp://ftp.cs.wisc.edu/Approx/tight.ps.Z"><!WA9><!WA9><!WA9><!WA9><imgalg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>tight.ps.Z</TT> :=<BR>Compactly supported tight affine spline frames in $L_2(\Rd)$<BR>Amos Ron and Zuowei Shen<BR>February 1996<BR>submitted to Math. Comp.<BR><P><DD><!WA10><!WA10><!WA10><!WA10><A href="ftp://ftp.cs.wisc.edu/Approx/affine.ps"><!WA11><!WA11><!WA11><!WA11><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>affine.ps</TT> :=<BR>Affine systems: the analysis of the analysis operator<BR>Amos Ron and Zuowei Shen<BR>December 1995<BR>submitted<P><DD><!WA12><!WA12><!WA12><!WA12><A href="ftp://ftp.cs.wisc.edu/Approx/ker2.ps"><!WA13><!WA13><!WA13><!WA13><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>ker2.ps</TT> :=<BR>On ascertaining inductively the dimension of the joint kernel <BR>of certain commuting linear operators II<BR>Carl de Boor, Amos Ron and Zuowei Shen<BR>May 1995<BR><P><DD><!WA14><!WA14><!WA14><!WA14><A href="ftp://ftp.cs.wisc.edu/Approx/cdr.ps"><!WA15><!WA15><!WA15><!WA15><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>cdr.ps</TT> :=<BR>How smooth is the smoothest function in a given refinable space?<BR>Albert Cohen, Ingrid Daubechies, Amos Ron<BR>May 1995<BR>appeared in ACHA, {\bf 3}, 87--89, 1996<BR><P><DD><!WA16><!WA16><!WA16><!WA16><A href="ftp://ftp.cs.wisc.edu/Approx/frame2.ps"><!WA17><!WA17><!WA17><!WA17><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>frame2.ps</TT> :=<BR>Gramian analysis of affine bases and affine frames<BR>Amos Ron and Zuowei Shen<BR>March 1995<BR>appeared in \TexasVIII<BR><P><DD><!WA18><!WA18><!WA18><!WA18><A href="ftp://ftp.cs.wisc.edu/Approx/smoothwav.ps"><!WA19><!WA19><!WA19><!WA19><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>smoothwav.ps</TT> :=<BR>Smooth refinable functions provide good approximation orders<BR>Amos Ron<BR>February 1995<BR>to appear in SIAM J. Math. Anal.<BR><P><DD><!WA20><!WA20><!WA20><!WA20><A href="ftp://ftp.cs.wisc.edu/Approx/wh.ps"><!WA21><!WA21><!WA21><!WA21><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>wh.ps</TT> :=<BR>Weyl-Heisenberg frames and Riesz bases in $L_2(\Rd)$<BR>Amos Ron  and  Zuowei Shen<BR>October 1994<BR>submitted<P><DD><!WA22><!WA22><!WA22><!WA22><A href="ftp://ftp.cs.wisc.edu/Approx/sphere.ps"><!WA23><!WA23><!WA23><!WA23><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>sphere.ps</TT> :=<BR>Strictly positive definite functions on spheres<BR>Amos Ron and Xingping Sun<BR>February 1994<BR>To appear in Math. Comp.<P><DD><!WA24><!WA24><!WA24><!WA24><A href="ftp://ftp.cs.wisc.edu/Approx/frame1.ps"><!WA25><!WA25><!WA25><!WA25><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>frame1.ps</TT> :=<BR>Frames and stable bases for shift-invariant subspaces of $L_2(\Rd)$<BR>Amos Ron and Zuowei Shen<BR>February 1994<BR>appeared in Canadian J. Math.\ {\bf 47} (1995), 1051--1094.  <BR><P><DD><!WA26><!WA26><!WA26><!WA26><A href="ftp://ftp.cs.wisc.edu/Approx/pscattered.ps"><!WA27><!WA27><!WA27><!WA27><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>pscattered.ps</TT> :=<BR>$L^p$-approximation orders with scattered centres<BR>Martin D. Buhmann and Amos Ron<BR>January 1994<BR><P><DD><!WA28><!WA28><!WA28><!WA28><A href="ftp://ftp.cs.wisc.edu/Approx/scattered.ps"><!WA29><!WA29><!WA29><!WA29><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>scattered.ps</TT> :=<BR>Radial basis function approximation: from gridded centers to scattered centers<BR>Nira Dyn and Amos Ron<BR>November 1993<BR>appeared in Proc.\ London Math.\ Soc. {\bf 71 (3)} (1995), 76--108.<BR><P><DD><!WA30><!WA30><!WA30><!WA30><A href="ftp://ftp.cs.wisc.edu/Approx/approxloc.ps"><!WA31><!WA31><!WA31><!WA31><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>approxloc.ps</TT> :=<BR>Approximation orders of  and approximation maps from  local principal <BR>shift-invariant spaces<BR>Amos Ron<BR>May 1993<BR>Journal of Approximation Theory {\bf 81(1)} (1995), 38--65.<BR><P><DD><!WA32><!WA32><!WA32><!WA32><A href="ftp://ftp.cs.wisc.edu/Approx/wav2.ps"><!WA33><!WA33><!WA33><!WA33><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>wav2.ps</TT> :=<BR>Multiresolution analysis by infinitely differentiable compactly<BR>supported functions<BR>Nira Dyn, Amos  Ron<BR>September 1992<BR>Applied and Computational Harmonic Analysis {\bf 2}, 15--20 (1995).<BR><P><DD><!WA34><!WA34><!WA34><!WA34><A href="ftp://ftp.cs.wisc.edu/Approx/stablemask.ps"><!WA35><!WA35><!WA35><!WA35><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>stablemask.ps</TT> :=<BR>Characterizations of linear independence and stability of the shifts of a <BR>univariate refinable function in terms of its refinement mask<BR>Amos Ron<BR>September 1992<BR><P><DD><!WA36><!WA36><!WA36><!WA36><A href="ftp://ftp.cs.wisc.edu/Approx/sct1.ps"><!WA37><!WA37><!WA37><!WA37><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>sct1.ps</TT> :=<BR>Negative observations concerning approximations from spaces generated by <BR>scattered shifts of functions vanishing at $\infty$<BR>Amos Ron<BR>September 1992<BR>has appeared in \JAT; 78(3); 1994; 364--372;<BR><P><DD><!WA38><!WA38><!WA38><!WA38><A href="ftp://ftp.cs.wisc.edu/Approx/ker.ps"><!WA39><!WA39><!WA39><!WA39><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>ker.ps</TT> :=<BR>On ascertaining inductively the dimension of the joint kernel <BR>of certain commuting linear operators<BR>Carl de Boor, Amos Ron, Zuowei Shen<BR>June 1992<BR>to appear in Adv. in Math.<BR><P><DD><!WA40><!WA40><!WA40><!WA40><A href="ftp://ftp.cs.wisc.edu/Approx/aoradial.ps"><!WA41><!WA41><!WA41><!WA41><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>aoradial.ps</TT> :=<BR>The $L_2$-Approximation Orders of Principal Shift-Invariant<BR>Spaces Generated by a Radial Basis Function<BR>Amos Ron<BR>March 1992<BR>has appeared in \Nmatnion; 245--268;<BR><P><DD><!WA42><!WA42><!WA42><!WA42><A href="ftp://ftp.cs.wisc.edu/Approx/aobivar.ps"><!WA43><!WA43><!WA43><!WA43><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>aobivar.ps</TT> :=<BR>A sharp upper bound on the approximation order of smooth bivariate pp functions<BR>Carl de Boor and Rong-Qing Jia<BR>March 1992<BR>has appeared in J.Approx.Theory; 72(1); 1993; 24--33;<BR><P><DD><!WA44><!WA44><!WA44><!WA44><A href="ftp://ftp.cs.wisc.edu/Approx/wavelet.ps"><!WA45><!WA45><!WA45><!WA45><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>wavelet.ps</TT> :=<BR>On the construction of multivariate (pre)wavelets<BR>Carl de Boor, Ronald A. DeVore, Amos Ron<BR>February 1992<BR>has appeared in Constr.Approx.; 9; 1993; 123--166;<BR><P><DD><!WA46><!WA46><!WA46><!WA46><A href="ftp://ftp.cs.wisc.edu/Approx/several.ps"><!WA47><!WA47><!WA47><!WA47><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>several.ps</TT> :=<BR>The structure of finitely generated shift-invariant spaces in $L_2(\RR^d)$ <BR>Carl de Boor, Ronald A. DeVore, Amos Ron<BR>February 1992<BR>has appeared in J. of Functional Analysis 119(1); 1994; 37--78;<BR><P><DD><!WA48><!WA48><!WA48><!WA48><A href="ftp://ftp.cs.wisc.edu/Approx/l2shift.ps"><!WA49><!WA49><!WA49><!WA49><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>l2shift.ps</TT> := <BR>Approximation from shift-invariant subspaces of $L_2(\RR^d)$ <BR>Carl de Boor, Ronald A. DeVore, Amos Ron<BR>July 1991<BR>has appeared in Trans.Amer.Math.Soc. 341; 1994; 787--806;<BR>%%% note, this file has the name `ell-2-shift', not `one-two-shift'.<BR><P><DD><!WA50><!WA50><!WA50><!WA50><A href="ftp://ftp.cs.wisc.edu/Approx/aoinfty.ps"><!WA51><!WA51><!WA51><!WA51><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>aoinfty.ps</TT> :=<BR>Fourier analysis of the approximation power of principal shift-invariant spaces<BR>Carl de Boor, Amos Ron<BR>July 1991<BR>has appeared in  Constr.Approx.; 8; 1992; 427--462;<BR><P><DD><!WA52><!WA52><!WA52><!WA52><A href="ftp://ftp.cs.wisc.edu/Approx/leastsol.ps"><!WA53><!WA53><!WA53><!WA53><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>leastsol.ps</TT> :=<BR>The least solution for the polynomial interpolation problem;<BR>Carl de Boor, Amos Ron<BR>has appeared in Math.Zeitschrift; 210; 1992; 347--378;<BR><P><DD><!WA54><!WA54><!WA54><!WA54><A href="ftp://ftp.cs.wisc.edu/Approx/compleast.ps"><!WA55><!WA55><!WA55><!WA55><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>compleast.ps</TT> :=<BR>Computational aspects of polynomial interpolation in several variables<BR>Carl de Boor, Amos Ron<BR>has appeared in Math.Comp.; 58; 1992; 705--727;<BR><P><DD><!WA56><!WA56><!WA56><!WA56><A href="ftp://ftp.cs.wisc.edu/Approx/polideal.ps"><!WA57><!WA57><!WA57><!WA57><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>polideal.ps</TT> :=<BR>Polynomial ideals and multivariate splines;<BR>Carl de Boor, Amos Ron<BR>has appeared in <BR>(Multivariate Approximation Theory IV, ISNM 90),<BR>C. Chui, W. Schempp, and K. Zeller (eds.),<BR>Birk\-h\"auser Verlag (Basel); 1989; 31--40;<BR><P><DD><!WA58><!WA58><!WA58><!WA58><A href="ftp://ftp.cs.wisc.edu/Approx/multiint.ps"><!WA59><!WA59><!WA59><!WA59><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>multiint.ps</TT> :=<BR>On multivariate polynomial interpolation;<BR>Carl de Boor, Amos Ron<BR>has appeared in Constr. Approx.; 6; 1990; 287--302;<BR><P><DD><!WA60><!WA60><!WA60><!WA60><A href="ftp://ftp.cs.wisc.edu/Approx/quasi.ps"><!WA61><!WA61><!WA61><!WA61><img alg="o" src="http://www.cs.wisc.edu/~amos/acimages/redball.gif"></A><TT>quasi.ps</TT> :=<BR>The exponentials in the span of the multiinteger <BR>translates of a compactly supported function: <BR>quasiinterpolation and approximation order<BR>1989<BR>Carl de Boor and Amos Ron<BR>has appeared in<BR>J. London Math. Soc. (2); 45; 1992; 519--535;<BR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -