⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 http:^^theory.stanford.edu^~jbasch^cs368^

📁 This data set contains WWW-pages collected from computer science departments of various universities
💻 EDU^~JBASCH^CS368^
字号:
Date: Wed, 20 Nov 1996 22:49:37 GMTServer: NCSA/1.4.1Content-type: text/htmlLast-modified: Thu, 02 May 1996 16:53:18 GMTContent-length: 7604<html><head><title> cs368 -- Geometric Algorithms </title></head><body><center><h1> <hr>cs368: Geometric Algorithms<br><font size=+1>Spring 96: Tu/Th, 1:15 - 2:30 (Gates 100)</font><hr> </h1></center><blockquote>This course covers the fundamental techniques for designing andanalyzing geometric algorithms in two, three, and higherdimensions. We will give an in-depth coverage of basic geometric datastructures, such as convex hulls, arrangements, Voronoi and Delaunaydiagrams, flat and hierarchical triangulations, partition trees,etc. We will also survey several important paradigms of geometricalgorithm design, including sweep line/plane methods, randomizedtechniques, cuttings and their applications, parametric searching, andvarious geometric optimization methods. We will motivate the materialwith example problems drawn from application areas such as robotics,graphics, vision, and geography, and discuss some of the non-trivialissues involved in implementing geometric algorithms robustly.<p> Prerequisite: cs161 (data structures and algorithms)</blockquote><hr><menu><li><!WA0><a href="#contact">Contact information</a><li><!WA1><a href="#outline">Course outline</a><li><!WA2><a href="#mechanics">Course mechanics</a><li><!WA3><a href="http://Theory.Stanford.EDU/~jbasch/cs368/biblio.html">Bibliography</a><li><!WA4><a href="#links">Geometric algorithms links</a></menu><hr><h2>Handouts</h2><center><table border=border><tr>  <td> <!WA5><a href=http://Theory.Stanford.EDU/~jbasch/cs368/handouts/ho1-coursefact.ps>Handout 1</a>: Course facts      <td> <!WA6><a href=http://Theory.Stanford.EDU/~jbasch/cs368/handouts/ho2-morefacts.ps>Handout 2</a>: More facts<tr>  <td> <!WA7><a href=http://Theory.Stanford.EDU/~jbasch/cs368/handouts/hw1.ps>Homework 1</a>: due 4/30/96</table></center><p>You can also see directly the full <!WA8><a href=http://Theory.Stanford.EDU/~jbasch/cs368/handouts/>Handouts directory</a>.<hr><h2><a name="contact">Contact information:</a></h2><DL><DD>Instructor: <!WA9><A HREF="http://robotics.stanford.edu/people/guibas/bio.html">Leonidas Guibas</A>  <DD><DL><dd> E-mail: <!WA10><a href="mailto: guibas@cs.stanford.edu">              guibas@cs.stanford.edu </a><dd> Office: Gates 3B, Room 374 (723-0304)<dd> Office hours: Thursdays, 3:00-5:00 pm</dl><DD>TA: <!WA11><A HREF="http://robotics.stanford.edu/~jbasch/">Julien Basch</A>  <DD><DL><dd> E-mail: <!WA12><a href="mailto: jbsch@cs.stanford.edu">              jbasch@cs.stanford.edu </a><dd> Office: Gates 3B, Room 376 (723-1604)<dd> Office hours: Wednesdays, 11:00-12:00 and 2:00-3:00 pm</dl></dl><hr><h2><a name="outline">Course Outline:</a></h2><dl><dd><p>There is now so much material in computational geometry that probablya full-year course is needed to cover all the basic techniques.Nevertheless, given some algorithmic preparation, we can cover lotsof ground even in one quarter. Below is a list of topics to becovered---but we do not promise to cover them in the order listed.</p><dl><dt>Geometric fundamentals<dd>	Computational primitives in two and three dimensions and their	implementation; models of computation and lower bounds;	geometric duality.<p><dt>Convexity<dd>	Algorithms for convex hulls of point sets in two and three	dimensions; convex polygons---properties and algorithms.<p><dt>Arrangements<dd>	The combinatorics of line arrangements, including the zone	theorem. Sweep-line methods for arrangements---topological	sweep. Davenport-Schinzel sequences. Many-face problems.<p><dt>Proximity problems<dd>	Voronoi Diagrams and Delaunay triangulations; algorithms and	applications.<p><dt>Geometric searching<dd>	Point-location in planar subdivisions. Fractional cascading	and other efficient data-structuring techniques.	Three-dimensional analogs.<p><dt>Partition trees and range searching<dd>	The ham-sandwich theorem; decimation methods; range-searching        problems of various kinds.<p><dt>Triangulations<dd>	Triangulating a simple polygon; reductions among geometric	problems; decompositions of polyhedra; questions of optimality.<p><dt>Random sampling techniques<dd>	Random sampling for partitioning; randomized incremental        algorithms; $\epsilon$-nets; making randomized algorithms        deterministic. Cuttings and their applications.<p><dt>Visibility and shortest path problems<dd>	Visibility graphs and their uses; Euclidean minimum spanning	tree and shortest path problems.<p><dt>Robustness in geometric computation<dd>	Issues in topological consistency; handling of degeneracies;	robust algorithms.</dl></dl><hr><h2><a name="mechanics">Course mechanics:</a></h2><dl><dd><dl><dt>Class hours:<dd>Tuesday, Thursday, 1:15 - 2:30 in Gates 100<p><dt>Text:<dd> The main text for the course is a reader, comprisedof a number of survey articles plus lecture notes scribed with thehelp of students in previous years of this class. A second recommendedreader is a preprint of the forthcoming book <em>ComputationalGeometry by Example</em>, by Mark de Berg, Mark van Kreveld, MarkOvermars, and Otfried Schwarzkopf. This book uses examples fromapplication areas to motivate all the main structures and techniquesof computational geometry and may become the main text for this coursein future years.  These two readers are available at the StanfordBookstore.<p><dt>Homeworks, Exams, Grading, etc:<dd> The course will have three substantial and mathematicallychallenging homeworks of the "pencil-and-paper" type. There will be nofinal exam, but there will be a midterm whose function will be to testbreath but not depth.  For the final grade we will count each of thehomeworks and the midterm as 25% of the grade. <i>Please do thehomework</i>--there is no other way to learn the material.<p><df>Homework/midterm schedule:<table border=border><thead><td>Homework <td>Handed out <td> Due</thead><tbody><tr> <td> <!WA13><a href="http://Theory.Stanford.EDU/~jbasch/cs368/handouts/hw1.ps">HW 1</a> <td> Tuesday, 16 April <td> Tuesday, 30 April<tr> <td> HW 2 <td> Tuesday, 30 April <td> Tuesday, 14 May<tr> <td> HW 3 <td> Tuesday, 14 May <td> Tuesday, 4 June<tr> <td>Midterm <td> in class <td> Tuesday, 21 May</tbody></table></dl></dl><hr><h2><a name=links>Geometric algorithms links</a></h2><ul><li><!WA14><ahref="http://www.cs.ruu.nl/usr/cgi-bin/bib-search/cgi-biblook/Geometry+Literature/rene/geombib/geom">On-linegeometry litterature database</a>, a BibTeX database of computationalgeometry related papers (see <!WA15><ahref="http://www.cs.berkeley.edu/~jeffe/geombib/geombib_1.html">databasedescription</a>),<li>CRC <!WA16><a href="http://freeabel.geom.umn.edu/docs/reference/CRC-formulas"	>Geometry Formulas and Facts</a>,<li>Jeff Erickson's <!WA17><a href="http://www.cs.berkeley.edu/~jeffe/compgeom.html"	>Computational Geometry</a> page,<li>David Eppstein's <!WA18><a href="http://www.ics.uci.edu/~eppstein/geom.html"	>Geometry in Action</a> page,<li>The Geometry Center's    <!WA19><a href="http://www.geom.umn.edu/software/cglist/"	>Directory of Computational Geometry Software</a>.<li><!WA20><ahref="http://web.cs.ubc.ca/cs/imager/contributions/bobl/videhoc/top.html" 	>VideHoc</a>: a program to visualize duality (runs only on SGI).</DL><hr><!WA21><A HREF = "http://www.stanford.edu/stanford.html"><!WA22><img src="http://Theory.Stanford.EDU/icons/stanford.seal56.gif"    alt="Stanford" border=0></A><!WA23><A HREF = "http://www-cs.stanford.edu/"><!WA24><img src="http://Theory.Stanford.EDU/icons/logo.csd.gif"     alt="CSD" border=0></A><!WA25><A HREF = "http://theory.stanford.edu/"><!WA26><img src="http://Theory.Stanford.EDU/icons/logo.theory.gif" alt="CS-Theory" border=0></A><HR><!WA27><IMG SRC="http://Theory.Stanford.EDU/cgi-bin/nph-count?width=5&link=/~jbasch/cs368/index.html"     ALT="Counter" ALIGN=RIGHT><!WA28><A HREF ="mailto:jbasch@cs.stanford.edu"><ADDRESS>jbasch@cs.stanford.edu</ADDRESS></A>(last updated: April 1, 1996)</body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -