📄 spline.m
字号:
%
% *** Input number of data points as N ***
% *** input independent(独立变量) variable points as F(1,i) ***
% *** input dependent(非独立变量) variable points as F(2,i) ***
% *** subroutine returns spline coefficients in
% matriX F, the function is of the form:
%
%************* S(di) = F(2,i)+F(3,i)*di+F(4,i)*di^2+F(5,i)*di^3 **************
%
% where di = X(i+1) - X(i) ****???(不确定)
%
% F(1:11,1:11) % Real F(0:10,0:10)
% % Integer N
%
for I = 1:N % Do 5 I = 0,N-1
F(6,I) = F(1,I+1) - F(1,I);
end % 5 Continue
F(3,1) = 0.0;
F(4,1) = 1.0;
F(5,1) = 0.0;
for I = 2:N %Do 6 I = 1,N-1
F(4,I) = 2.0*(F(6,I-1) + F(6,I)) - F(5,I-1)*F(6,I-1); %F(3,I) = 2.0*(F(5,I-1) + F(5,I)) - F(4,I-1)*F(5,I-1)
F(3,I) = (3.0*((F(2,I+1)-F(2,I))/F(6,I) - (F(2,I) -F(2,I-1))/F(6,I-1))-F(6,I-1)*F(3,I-1))/F(4,I);%F(2,I) = (3.0*((F(1,I+1)-F(1,I))/F(5,I) - (F(1,I) -
%& F(1,I-1))/F(5,I-1))-F(5,I-1)*F(2,I-1))/F(3,I)
F(5,I) = F(6,I)/F(4,I); %F(4,I) = F(5,I)/F(3,I)
end %6 Continue
F(4,N+1) = 0.0; %F(3,N) = 0.0
for I = N:-1:1 %Do 7 I = N-1,0,-1
F(4,I) = F(3,I) - F(4,I+1)*F(5,I); %F(3,I) = F(2,I) - F(3,I+1)*F(4,I)
F(3,I) = (F(2,I+1) - F(2,I))/F(6,I) - (F(4,I+1) +2.0*F(4,I))*F(6,I)/3.0; %F(2,I) = (F(1,I+1) - F(1,I))/F(5,I) - (F(3,I+1) +
%* 2.0*F(3,I))*F(5,I)/3.0
F(5,I) = (F(4,I+1) - F(4,I))/(3.0*F(6,I)); %F(4,I) = (F(3,I+1) - F(3,I))/(3.0*F(5,I))
end %7 Continue
% Return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -