⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geninfds.m

📁 Matlab toolbox that contains functions of Kalman filter and random system simulation.
💻 M
📖 第 1 页 / 共 5 页
字号:
    % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        % FFUN part of likelihood        llh_f = feval(InferenceDS.model.prior, InferenceDS.model, ext_nextstate(:,k), ext_state_1(:,k), oNoiseDS.noiseSources{1});        % HFUN part of likelihood        llh_h = feval(InferenceDS.model.likelihood, InferenceDS.model, ext_obs(:,k), ext_state_2(:,k), ext_U2(:,k), oNoiseDS.noiseSources{2});        llh(k) = llh_f * llh_h;       % we assume independence    end%-------------------------------------------------------------------------------------function observ = hfun_parameter_f(InferenceDS, state, N, U2)    %  HFUN_PARAMETER_F   State observation function of meta system for parameter estimation using only ffun    %                     from the underlying GSSM.    %    %    observ = hfun_parameter_f(InferenceDS, state, N, U2)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) meta system state vector    %         N               : (c-vector) meta system observation noise vector    %         U2              : (c-vector) meta system exogenous input 2    %    OUTPUT    %         observ          : (c-vector) meta system observation vector    %    % Relationship between arguments and external model (GSSM) variables    %    %   state  -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U2     -> [external_state(k-1) external_U1(k-1)]'    %   N      -> [external_process_noise(k-1)]'    %   observ -> [external_state(k)]'    [dim,nov] = size(state);    observ = zeros(InferenceDS.obsdim,nov);    dimX  = InferenceDS.model.statedim;    dimV  = InferenceDS.model.Vdim;    dimU1 = InferenceDS.model.U1dim;    ext_state_1     = U2(1:dimX,:);    ext_proc_noise  = N(1:dimV,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ffun_idx = InferenceDS.paramFFunOutIdxVec;    dimFO = length(ffun_idx);    % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        FFunOut  = feval(InferenceDS.model.ffun, InferenceDS.model, ext_state_1(:,k), ext_proc_noise(:,k), ext_U1(:,k));        observ(:,k) = FFunOut(ffun_idx);    end%-------------------------------------------------------------------------------------function observ = hfun_parameter_h(InferenceDS, state, N, U2)    %  HFUN_PARAMETER_H   State observation function of meta system for parameter estimation using only hfun    %                     from the underlying GSSM.    %    %    observ = hfun_parameter_h(InferenceDS, state, N, U2)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) system state vector    %         N               : (c-vector) observation noise vector    %         U2              : (c-vector) exogenous input 2    %    OUTPUT    %         observ          : (c-vector) observation vector    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state  -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U2     -> [external_state(k) external_U2(k)]'    %   N      -> [external_observation_noise(k)]'    %   observ -> [external_observation(k)]'    [dim,nov] = size(state);    observ = zeros(InferenceDS.obsdim,nov);    dimX  = InferenceDS.model.statedim;    dimO  = InferenceDS.model.obsdim;    dimN  = InferenceDS.model.Ndim;    dimU2 = InferenceDS.model.U2dim;    ext_state_2     = U2(1:dimX,:);    ext_U2          = U2(dimX+1:dimX+dimU2,:);    ext_obs_noise   = N(1:dimN,:);    hfun_idx = InferenceDS.paramHFunOutIdxVec;    dimHO = length(hfun_idx);    % loop over all input vectors    for k=1:nov,       % set model parameter vector       InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);       HFunOut = feval(InferenceDS.model.hfun, InferenceDS.model, ext_state_2(:,k), ext_obs_noise(:,k), ext_U2(:,k));       observ(:,k) = HFunOut(hfun_idx);    end%-------------------------------------------------------------------------------------function observ = hfun_parameter_both(InferenceDS, state, N, U2)    %  HFUN_PARAMETER_BOTH   State observation function of meta system for parameter estimation using the full system    %                        dynamics of the underlying GSSM as observation, i.e. observ=hfun(ffun(x))    %    %    %    observ = hfun_parameter_both(InferenceDS, state, N, U2)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         state           : (c-vector) system state vector    %         N               : (c-vector) observation noise vector    %         U2              : (c-vector) exogenous input 2    %    OUTPUT    %         observ          : (c-vector) observation vector    %    % Relationship between input arguments and external model (GSSM) variables    %    %   state  -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof    %   U2     -> [external_state(k-1) external_U1(k-1) external_U2(k)]'    %   N      -> [external_observation_noise(k)]'    %   observ -> [external_observation(k)]'    [dim,nov] = size(state);    observ = zeros(InferenceDS.obsdim,nov);    dimX  = InferenceDS.model.statedim;    dimO  = InferenceDS.model.obsdim;    dimN  = InferenceDS.model.Ndim;    dimU1 = InferenceDS.model.U1dim;    dimU2 = InferenceDS.model.U2dim;    ext_state_1     = U2(1:dimX,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ext_U2          = U2(dimX+dimU1+1:dimX+dimU1+dimU2,:);    ext_obs_noise   = N(1:dimN,:);    hfun_idx = InferenceDS.paramHFunOutIdxVec;    dimHO = length(hfun_idx);    % loop over all input vectors    for k=1:nov,       % set model parameter vector       InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);       % calculate X(k)=ffun(X(k-1))       ext_state_2 = feval(InferenceDS.model.ffun, InferenceDS.model, ext_state_1(:,k), [], ext_U1(:,k));       HFunOut = feval(InferenceDS.model.hfun, InferenceDS.model, ext_state_2, ext_obs_noise(:,k), ext_U2(:,k));       observ(:,k) = HFunOut(hfun_idx);    end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_f(InferenceDS, obs, state, U2, oNoiseDS)    %  LIKELIHOOD_PARAMETER_F  Calculates the likelood of a real-world observation obs given    %                           a realization of the predicted observation for a given state,    %                           i.e. p(y|x) = p(obs|state)    %    %    llh = likelihood_parameter_f(InferenceDS, obs, observ)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         obs             : (c-vector)  real-world observation vector    %         state           : (c-vector)  meta system state vector    %         U2              : (c-vector) meta system exogenous input 2    %         oNoiseDS        : (NoiseDS)   observation noise data structure    %    OUTPUT    %         llh             : scalar  likelihood    [dim,nov] = size(state);    llh = zeros(1,nov);    dimX  = InferenceDS.model.statedim;    dimO  = InferenceDS.model.obsdim;    dimU1 = InferenceDS.model.U1dim;    ext_state_1     = U2(1:dimX,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ffun_idx = InferenceDS.paramFFunOutIdxVec;    dimFO = length(ffun_idx);    dimHO = length(hfun_idx);    ext_nextstate = obs(1:dimF0,:);    ext_obs = obs(dimF0+1:dimF0+dimH0,:);    % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        % FFUN part of likelihood        llh(k) = feval(InferenceDS.model.prior, InferenceDS.model, ext_nextstate(:,k), ext_state_1(:,k), oNoiseDS);    end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_h(InferenceDS, obs, state, U2, oNoiseDS)    %  LIKELIHOOD_PARAMETER_H  Calculates the likelood of a real-world observation obs given    %                           a realization of the predicted observation for a given state,    %                           i.e. p(y|x) = p(obs|state)    %    %    llh = likelihood_parameter_h(InferenceDS, obs, observ)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         obs             : (c-vector)  real-world observation vector    %         state           : (c-vector)  meta system state vector    %         U2              : (c-vector) meta system exogenous input 2    %         oNoiseDS        : (NoiseDS)   observation noise data structure    %    OUTPUT    %         llh             : scalar  likelihood    [dim,nov] = size(state);    llh = zeros(1,nov);    dimX  = InferenceDS.model.statedim;    dimO  = InferenceDS.model.obsdim;    dimU2 = InferenceDS.model.U2dim;    ext_state_2     = U2(1:dimX,:);    ext_U2          = U2(dimX+1:end,:);    hfun_idx = InferenceDS.paramHFunOutIdxVec;    dimHO = length(hfun_idx);    % loop over all input vectors    for k=1:nov,        % set model parameter vector        InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec);        llh(k) = feval(InferenceDS.model.likelihood, InferenceDS.model, obs(:,k), ext_state_2(:,k), ext_U2(:,k), oNoiseDS);    end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_both(InferenceDS, obs, state, U2, oNoiseDS)    %  LIKELIHOOD_PARAMETER_BOTH  Calculates the likelood of a real-world observation obs given    %                             a realization of the predicted observation for a given state,    %                             i.e. p(y|x) = p(obs|state)    %    %    llh = likelihood_parameter_both(InferenceDS, obs, observ)    %    %    INPUT    %         InferenceDS     : (InferenceDS) Inference data structure    %         obs             : (c-vector)  real-world observation vector    %         state           : (c-vector)  meta system state vector    %         U2              : (c-vector) meta system exogenous input 2    %         oNoiseDS        : (NoiseDS)   observation noise data structure    %    OUTPUT    %         llh             : scalar  likelihood    [dim,nov] = size(state);    llh = zeros(1,nov);    dimX  = InferenceDS.model.statedim;    dimO  = InferenceDS.model.obsdim;    dimU1 = InferenceDS.model.U1dim;    dimU2 = InferenceDS.model.U2dim;    ext_state_1     = U2(1:dimX,:);    ext_U1          = U2(dimX+1:dimX+dimU1,:);    ext_U2          = U2(dimX+dimU1+1:end,:);    hfun_idx = InferenceDS.paramHFunOutIdxVec;    dimHO = length(hfun_idx);        % loop over all input vectors    for k=1:nov,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -