📄 geninfds.m
字号:
% loop over all input vectors for k=1:nov, % set model parameter vector InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec); % FFUN part of likelihood llh_f = feval(InferenceDS.model.prior, InferenceDS.model, ext_nextstate(:,k), ext_state_1(:,k), oNoiseDS.noiseSources{1}); % HFUN part of likelihood llh_h = feval(InferenceDS.model.likelihood, InferenceDS.model, ext_obs(:,k), ext_state_2(:,k), ext_U2(:,k), oNoiseDS.noiseSources{2}); llh(k) = llh_f * llh_h; % we assume independence end%-------------------------------------------------------------------------------------function observ = hfun_parameter_f(InferenceDS, state, N, U2) % HFUN_PARAMETER_F State observation function of meta system for parameter estimation using only ffun % from the underlying GSSM. % % observ = hfun_parameter_f(InferenceDS, state, N, U2) % % INPUT % InferenceDS : (InferenceDS) Inference data structure % state : (c-vector) meta system state vector % N : (c-vector) meta system observation noise vector % U2 : (c-vector) meta system exogenous input 2 % OUTPUT % observ : (c-vector) meta system observation vector % % Relationship between arguments and external model (GSSM) variables % % state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof % U2 -> [external_state(k-1) external_U1(k-1)]' % N -> [external_process_noise(k-1)]' % observ -> [external_state(k)]' [dim,nov] = size(state); observ = zeros(InferenceDS.obsdim,nov); dimX = InferenceDS.model.statedim; dimV = InferenceDS.model.Vdim; dimU1 = InferenceDS.model.U1dim; ext_state_1 = U2(1:dimX,:); ext_proc_noise = N(1:dimV,:); ext_U1 = U2(dimX+1:dimX+dimU1,:); ffun_idx = InferenceDS.paramFFunOutIdxVec; dimFO = length(ffun_idx); % loop over all input vectors for k=1:nov, % set model parameter vector InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec); FFunOut = feval(InferenceDS.model.ffun, InferenceDS.model, ext_state_1(:,k), ext_proc_noise(:,k), ext_U1(:,k)); observ(:,k) = FFunOut(ffun_idx); end%-------------------------------------------------------------------------------------function observ = hfun_parameter_h(InferenceDS, state, N, U2) % HFUN_PARAMETER_H State observation function of meta system for parameter estimation using only hfun % from the underlying GSSM. % % observ = hfun_parameter_h(InferenceDS, state, N, U2) % % INPUT % InferenceDS : (InferenceDS) Inference data structure % state : (c-vector) system state vector % N : (c-vector) observation noise vector % U2 : (c-vector) exogenous input 2 % OUTPUT % observ : (c-vector) observation vector % % Relationship between input arguments and external model (GSSM) variables % % state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof % U2 -> [external_state(k) external_U2(k)]' % N -> [external_observation_noise(k)]' % observ -> [external_observation(k)]' [dim,nov] = size(state); observ = zeros(InferenceDS.obsdim,nov); dimX = InferenceDS.model.statedim; dimO = InferenceDS.model.obsdim; dimN = InferenceDS.model.Ndim; dimU2 = InferenceDS.model.U2dim; ext_state_2 = U2(1:dimX,:); ext_U2 = U2(dimX+1:dimX+dimU2,:); ext_obs_noise = N(1:dimN,:); hfun_idx = InferenceDS.paramHFunOutIdxVec; dimHO = length(hfun_idx); % loop over all input vectors for k=1:nov, % set model parameter vector InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec); HFunOut = feval(InferenceDS.model.hfun, InferenceDS.model, ext_state_2(:,k), ext_obs_noise(:,k), ext_U2(:,k)); observ(:,k) = HFunOut(hfun_idx); end%-------------------------------------------------------------------------------------function observ = hfun_parameter_both(InferenceDS, state, N, U2) % HFUN_PARAMETER_BOTH State observation function of meta system for parameter estimation using the full system % dynamics of the underlying GSSM as observation, i.e. observ=hfun(ffun(x)) % % % observ = hfun_parameter_both(InferenceDS, state, N, U2) % % INPUT % InferenceDS : (InferenceDS) Inference data structure % state : (c-vector) system state vector % N : (c-vector) observation noise vector % U2 : (c-vector) exogenous input 2 % OUTPUT % observ : (c-vector) observation vector % % Relationship between input arguments and external model (GSSM) variables % % state -> external model parameters or a subset (specified by InferenceDS.paramParamIdxVec) thereof % U2 -> [external_state(k-1) external_U1(k-1) external_U2(k)]' % N -> [external_observation_noise(k)]' % observ -> [external_observation(k)]' [dim,nov] = size(state); observ = zeros(InferenceDS.obsdim,nov); dimX = InferenceDS.model.statedim; dimO = InferenceDS.model.obsdim; dimN = InferenceDS.model.Ndim; dimU1 = InferenceDS.model.U1dim; dimU2 = InferenceDS.model.U2dim; ext_state_1 = U2(1:dimX,:); ext_U1 = U2(dimX+1:dimX+dimU1,:); ext_U2 = U2(dimX+dimU1+1:dimX+dimU1+dimU2,:); ext_obs_noise = N(1:dimN,:); hfun_idx = InferenceDS.paramHFunOutIdxVec; dimHO = length(hfun_idx); % loop over all input vectors for k=1:nov, % set model parameter vector InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec); % calculate X(k)=ffun(X(k-1)) ext_state_2 = feval(InferenceDS.model.ffun, InferenceDS.model, ext_state_1(:,k), [], ext_U1(:,k)); HFunOut = feval(InferenceDS.model.hfun, InferenceDS.model, ext_state_2, ext_obs_noise(:,k), ext_U2(:,k)); observ(:,k) = HFunOut(hfun_idx); end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_f(InferenceDS, obs, state, U2, oNoiseDS) % LIKELIHOOD_PARAMETER_F Calculates the likelood of a real-world observation obs given % a realization of the predicted observation for a given state, % i.e. p(y|x) = p(obs|state) % % llh = likelihood_parameter_f(InferenceDS, obs, observ) % % INPUT % InferenceDS : (InferenceDS) Inference data structure % obs : (c-vector) real-world observation vector % state : (c-vector) meta system state vector % U2 : (c-vector) meta system exogenous input 2 % oNoiseDS : (NoiseDS) observation noise data structure % OUTPUT % llh : scalar likelihood [dim,nov] = size(state); llh = zeros(1,nov); dimX = InferenceDS.model.statedim; dimO = InferenceDS.model.obsdim; dimU1 = InferenceDS.model.U1dim; ext_state_1 = U2(1:dimX,:); ext_U1 = U2(dimX+1:dimX+dimU1,:); ffun_idx = InferenceDS.paramFFunOutIdxVec; dimFO = length(ffun_idx); dimHO = length(hfun_idx); ext_nextstate = obs(1:dimF0,:); ext_obs = obs(dimF0+1:dimF0+dimH0,:); % loop over all input vectors for k=1:nov, % set model parameter vector InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec); % FFUN part of likelihood llh(k) = feval(InferenceDS.model.prior, InferenceDS.model, ext_nextstate(:,k), ext_state_1(:,k), oNoiseDS); end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_h(InferenceDS, obs, state, U2, oNoiseDS) % LIKELIHOOD_PARAMETER_H Calculates the likelood of a real-world observation obs given % a realization of the predicted observation for a given state, % i.e. p(y|x) = p(obs|state) % % llh = likelihood_parameter_h(InferenceDS, obs, observ) % % INPUT % InferenceDS : (InferenceDS) Inference data structure % obs : (c-vector) real-world observation vector % state : (c-vector) meta system state vector % U2 : (c-vector) meta system exogenous input 2 % oNoiseDS : (NoiseDS) observation noise data structure % OUTPUT % llh : scalar likelihood [dim,nov] = size(state); llh = zeros(1,nov); dimX = InferenceDS.model.statedim; dimO = InferenceDS.model.obsdim; dimU2 = InferenceDS.model.U2dim; ext_state_2 = U2(1:dimX,:); ext_U2 = U2(dimX+1:end,:); hfun_idx = InferenceDS.paramHFunOutIdxVec; dimHO = length(hfun_idx); % loop over all input vectors for k=1:nov, % set model parameter vector InferenceDS.model = feval(InferenceDS.model.setparams, InferenceDS.model, state(:,k), InferenceDS.paramParamIdxVec); llh(k) = feval(InferenceDS.model.likelihood, InferenceDS.model, obs(:,k), ext_state_2(:,k), ext_U2(:,k), oNoiseDS); end%-------------------------------------------------------------------------------------function llh = likelihood_parameter_both(InferenceDS, obs, state, U2, oNoiseDS) % LIKELIHOOD_PARAMETER_BOTH Calculates the likelood of a real-world observation obs given % a realization of the predicted observation for a given state, % i.e. p(y|x) = p(obs|state) % % llh = likelihood_parameter_both(InferenceDS, obs, observ) % % INPUT % InferenceDS : (InferenceDS) Inference data structure % obs : (c-vector) real-world observation vector % state : (c-vector) meta system state vector % U2 : (c-vector) meta system exogenous input 2 % oNoiseDS : (NoiseDS) observation noise data structure % OUTPUT % llh : scalar likelihood [dim,nov] = size(state); llh = zeros(1,nov); dimX = InferenceDS.model.statedim; dimO = InferenceDS.model.obsdim; dimU1 = InferenceDS.model.U1dim; dimU2 = InferenceDS.model.U2dim; ext_state_1 = U2(1:dimX,:); ext_U1 = U2(dimX+1:dimX+dimU1,:); ext_U2 = U2(dimX+dimU1+1:end,:); hfun_idx = InferenceDS.paramHFunOutIdxVec; dimHO = length(hfun_idx); % loop over all input vectors for k=1:nov,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -