📄 ekfm.m
字号:
function [xhat_data,Pmat]=ekfm(kalmfilex,kalmfiley,linfile,xbar,...
P0,q,r,u,y,timeidx,optpar)
% EKFM
% This function is an implementation of the conventional
% extended Kalman filter (EKF).
% It is implemented to handle multiple observation streams.
% The filter estimates the states for nonlinear systems written in
% the general form:
% x(k+1) = f[x(k),u(k),v(k)]
% y1(k) = g1[x(k),w1(k)]
% :
% yn(k) = gn[x(k),wn(k)]
% where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'
% are (white) noise sources.
%
% Call:
% [xhat,Pmat]=ekfm(xfunc,yfunc,linfunc,x0,P0,q,r,u,y,tidx,optpar)
%
% Input:
% xfunc - Name of function containing the state equations.
% yfunc - Cell array specifying the names of the functions
% containing the output equations.
% linfunc - Function containing linearization procedure.
% x0 - Initial state vector.
% P0 - Initial covariance matrix (symmetric, nonnegative definite).
% q - Covariance matrices for process noise.
% r - Cell array containing the measurement noise cov. matrices.
% u - Input signal. Dimension is [samples x inputs].
% Use [] if there are no inputs.
% y - Cell array containing the output signals.
% Dimension of each stream is [observations x outputs-in-stream].
% tidx - Cell array containing vector with time stamps (in samples)
% for the observations in y.
% optpar - Data structure containing optional parameters:
% .init : Initial parameters for 'xfile', 'yfile', and
% 'linfile' (use an arbitrary format).
%
% Output:
% xhat - State estimates. Dimension is [samples+1 x states].
% Pmat - Matrix where each row contains the upper triangular elements
% of the covariance matrix estimates. The dimension is
% [samples+1 x 0.5*states*(states+1)]. The individual covariance
% matrices can later be extracted with MAT2COV.
%
% The user must write the three functions 'xfunc', 'yfunc', and 'linfunc'
% containing state update, output equation, and linearization. The
% function containing the state update should have the header
% (the function name is arbitrary):
% function x=my_xfile(x,u,v)
%
% the functions containing output equations must have the header
% function y=my_yfile(x,w)
%
% while the function containing the linearization must have the header
% function [M,N]=my_linfile(x,u,vw,flag)
% flag=0: Linearization of the state equation
% flag=i: Linerization of the output equation no. i (i=1...n).
%
% In all three cases, an initialization of constant parameters can be
% made using the parameter 'optpar.init'. This parameter is passed through
% x if the functions are called with only one parameter.
%
% Written by Magnus Norgaard
% LastEditDate: Nov. 9, 2001
% >>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<
nx = size(P0,1); % # of states
nv = size(q,1); % # of process noise sources
if isempty(xbar), % Set to x0=0 if not specified
xbar = zeros(nx,1);
elseif length(xbar)~=nx,
error('Dimension mismatch between x0 and P0');
end
streams = length(y);
if ~(iscell(kalmfiley) & iscell(r) & iscell(timeidx) & iscell(y))
error('"yfunc", "r", "tidx", and "y" must be cell array');
elseif (streams~=length(r) | streams~=length(timeidx) | ...
streams~=length(kalmfiley))
error('"yfunc", "r", "tidx", and "y" must have same number of cells');
end
ny = 0; % Total number of observations
lastsample = 0; % Number of sample containing last observation
idx1 = zeros(streams,1); % Index to start of each stream in ybar
idx2 = zeros(streams,1); % Index to end of each stream in ybar
for n=1:streams, % Wrap information about observation stream
obs(n).yfunc = kalmfiley{n}; % into data structure
obs(n).y = y{n};
obs(n).tidx = timeidx{n};
obs(n).ny = size(obs(n).y,2);
obs(n).nobs = size(obs(n).y,1);
obs(n).r = r{n};
obs(n).nw = size(obs(n).r,1);
if (obs(n).nobs~=size(obs(n).tidx,1)),
error('Dimension mismatch between y and tidx');
end
ny = ny + obs(n).ny;
if obs(n).tidx(end)>lastsample,
lastsample=obs(n).tidx(end);
end
idx1(n) = ny - obs(n).ny + 1;
idx2(n) = ny;
end
if isempty(u), % No inputs
nu = 0; samples = lastsample; uk1 = [];
else
[samples,nu] = size(u); % # of samples and inputs
end
Pxbar = P0; % A priori estimate = initial covariance
xhat_data = zeros(samples+1,nx); % Matrix for storing state estimates
Pmat = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices
pidx = find(tril(reshape(1:nx*nx,nx,nx))); % Index in P
ybar = zeros(ny,1);
yidx = ones(streams,1); % Index into y-vectors
% ----- Initialize state+output equations and linearization -----
if nargin<11, % No optional parameters passed
optpar = [];
end
if isfield(optpar,'init') % Parameters for m-functions
initpar = optpar.init;
else
initpar = [];
end
vmean = zeros(nv,1); % Mean of process noise
for n=1:streams, % Mean of measurement noise
obs(n).wmean = zeros(obs(n).nw,1);
end
feval(kalmfilex,initpar); % Initialize state equation
for n=1:streams,
feval(obs(n).yfunc,initpar);% Initialize output equations
end
feval(linfile,initpar); % Initialize linearization
counter = 0; % Counts the progress of the filtering session
waithandle=waitbar(0,'Filtering in progress'); % Initialize waitbar
% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
for k=0:samples,
% --- Measurement update (a posteriori update) ---
for n=1:streams,
ybar(idx1(n):idx2(n)) = feval(obs(n).yfunc,xbar,obs(n).wmean);
if (k<=obs(n).tidx(end) & obs(n).tidx(yidx(n))==k),
% Linearization
[C,G] = feval(linfile,xbar,[],obs(n).wmean,n);
% Kalman gain
if isempty(G),
K = Pxbar*C'/(C*Pxbar*C'+obs(n).r); % Noise enters directly
else
K = Pxbar*C'/(C*Pxbar*C'+G*obs(n).r*G');% General update
end
% A posteriori covariance
Pxbar = Pxbar-K*C*Pxbar;
% State estimate
xbar = xbar + K*[obs(n).y(yidx(n),:)'-ybar(idx1(n):idx2(n))];
yidx(n) = yidx(n) + 1; % Update index in time vector
end
end
xhat = xbar;
Px = Pxbar;
% --- Time update (a'priori update) of state and covariance ---
if k<samples,
if nu>0 uk1 = u(k+1,:)'; end
xbar=feval(kalmfilex,xhat,uk1,vmean); % State update
[A,F] = feval(linfile,xhat,uk1,vmean,0); % Linearization
if isempty(F), % Covariance update
Pxbar = A*Px*A' + q; % Noise enters directly
else
Pxbar = A*Px*A' + F*q*F'; % General update
end
end
% --- Store results ---
xhat_data(k+1,:) = xhat';
Pmat(k+1,:) = Px(pidx)';
% --- How much longer? ---
if (counter+0.01<= k/samples),
counter = k/samples;
waitbar(k/samples,waithandle); % Update waitbar
end
end
close(waithandle); % Close waitbar window
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -