📄 rfc2250.txt
字号:
An implementation based on this encapsulation assumes that the Video_Sequence_Header is repeated periodically in the MPEG bit- stream. In practice (though not required by MPEG standard) this is used to allow channel switching and to receive and start decoding a continuously relayed MPEG bit-stream at arbitrary points in the media stream. It is suggested that when playing back from an MPEG stream from a file format (where the Video_Sequence_Header may only be represented at the beginning of the stream) that the first Video_Sequence_Header (preceded by an end-of-stream indicator) be saved by the packetizer for periodic injection in to the network stream.3.2 MPEG Audio elementary streams MPEG1 Audio can be distinguished from MPEG2 Audio from the MPEG ancillary_data() header. For either MPEG1 or MPEG2 Audio, distinct Presentation Time Stamps may be present for frames which correspond to either 384 samples for Layer-I, or 1152 samples for Layer-II or Layer-III. The actual number of bytes required to represent this number of samples will vary depending on the encoder parameters. Multiple audio frames may be encapsulated within one RTP packet. In this case, an integral number of audio frames must be contained within the packet and the fragmentation header defined in Section 3.5 shall be set to 0. Also, if relatively short packets are to be used, one frame may be so large that it may straddle multiple RTP packets. For example, for Layer-II MPEG audio sampled at a rate of 44.1 KHz each frame would represent a time slot of 26.1 msec. At this sampling rate if the compressed bit-rate is 384 kbits/sec (i.e. 48 kBytes/sec) then the average audio frame size would be 1.25 KBytes. If packets were to be 500 Bytes long, then each audio frame would straddle 3 RTP packets.Hoffman, et. al. Standards Track [Page 6]RFC 2250 RTP Format for MPEG1/MPEG2 Video January 1998 The audio fragmentation indicator header (See Section 3.5) shall be present for an MPEG1/2 Audio payload type to provide for this fragmentation.3.3 RTP Fixed Header for MPEG ES encapsulation The RTP header fields are used as follows: Payload Type: Distinct payload types should be assigned for video elementary streams and audio elementary streams. See [4] for payload type assignments. M bit: For video, set to 1 on packet containing MPEG frame end code, 0 otherwise. For audio, set to 1 on first packet of a "talk-spurt," 0 otherwise. PT: MPEG video or audio stream ID. timestamp: 32-bit 90K Hz timestamp representing presentation time of MPEG picture or audio frame. Same for all packets that make up a picture or audio frame. May not be monotonically increasing in video stream if B pictures present in stream. For packets that contain only a video sequence and/or GOP header, the timestamp is that of the subsequent picture.3.4 MPEG Video-specific header This header shall be attached to each RTP packet after the RTP fixed header. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MBZ |T| TR | |N|S|B|E| P | | BFC | | FFC | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ AN FBV FFV MBZ: Unused. Must be set to zero in current specification. This space is reserved for future use. T: MPEG-2 (Two) specific header extension present (1 bit). Set to 1 when the MPEG-2 video-specific header extension (see Section 3.4.1) follows this header. This extension may be needed for improved error resilience; however, its inclusion in an RTP packet is optional. (See Appendix 1.)Hoffman, et. al. Standards Track [Page 7]RFC 2250 RTP Format for MPEG1/MPEG2 Video January 1998 TR: Temporal-Reference (10 bits). The temporal reference of the current picture within the current GOP. This value ranges from 0-1023 and is constant for all RTP packets of a given picture. AN: Active N bit for error resilience (1 bit). Set to 1 when the following bit (N) is used to signal changes in the picture header information for MPEG-2 payloads. It must be set to 0 for MPEG-1 payloads or when N bit is not used. N: New picture header (1 bit). Used for MPEG-2 payloads when the previous bit (AN) is set to 1. Otherwise, it must be set to zero. Set to 1 when the information contained in the previously transmitted Picture Headers can't be used to reconstruct a header for the current picture. This happens when the current picture is encoded using a different set of parameters than the previous pictures of the same type. The N bit must be constant for all RTP packets that belong to the same picture so that receipt of any packet from a picture allows detecting whether information necessary for reconstruction was contained in that picture (N = 1) or a previous one (N = 0). S: Sequence-header-present (1 bit). Normally 0 and set to 1 at the occurrence of each MPEG sequence header. Used to detect presence of sequence header in RTP packet. B: Beginning-of-slice (BS) (1 bit). Set when the start of the packet payload is a slice start code, or when a slice start code is preceded only by one or more of a Video_Sequence_Header, GOP_header and/or Picture_Header. E: End-of-slice (ES) (1 bit). Set when the last byte of the payload is the end of an MPEG slice. P: Picture-Type (3 bits). I (1), P (2), B (3) or D (4). This value is constant for each RTP packet of a given picture. Value 000B is forbidden and 101B - 111B are reserved to support future extensions to the MPEG ES specification. FBV: full_pel_backward_vector BFC: backward_f_code FFV: full_pel_forward_vector FFC: forward_f_code Obtained from the most recent picture header, and are constant for each RTP packet of a given picture. For I frames none of these values are present in the picture header andHoffman, et. al. Standards Track [Page 8]RFC 2250 RTP Format for MPEG1/MPEG2 Video January 1998 they must be set to zero in the RTP header. For P frames only the last two values are present and FBV and BFC must be set to zero in the RTP header. For B frames all the four values are present.3.4.1 MPEG-2 Video-specific header extension 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |X|E|f_[0,0]|f_[0,1]|f_[1,0]|f_[1,1]| DC| PS|T|P|C|Q|V|A|R|H|G|D| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ X: Unused (1 bit). Must be set to zero in current specification. This space is reserved for future use. E: Extensions present (1 bit). If set to 1, this header extension, including the composite display extension when D = 1, will be followed by one or more of the following extensions: quant matrix extension, picture display extension, picture temporal scalable extension, picture spatial scalable extension and copyright extension. The first byte of these extensions data gives the length of the extensions in 32 bit words including the length field itself. Zero padding bytes are used at the end if required to align the extensions to 32 bit boundary. Since they may not be vital in decoding of a picture, the inclusion of any one of these extensions in an RTP packet is optional even when the MPEG-2 video-specific header extension is included in the packet (T = 1). (See Appendix 1.) If present, they should be copied from the corresponding extensions following the most recent MPEG-2 picture coding extension and they remain constant for each RTP packet of a given picture. The extension start code (32 bits) and the extension start code ID (4 bits) are included. Therefore the extensions are self identifying. f_[0,0]: forward horizontal f_code (4 bits) f_[0,1]: forward vertical f_code (4 bits) f_[1,0]: backward horizontal f_code (4 bits) f_[1,1]: backward vertical f_code (4 bits) DC: intra_DC_precision (2 bits) PS: picture_structure (2 bits)Hoffman, et. al. Standards Track [Page 9]RFC 2250 RTP Format for MPEG1/MPEG2 Video January 1998 T: top_field_first (1 bit) P: frame_predicted_frame_dct (1 bit) C: concealment_motion_vectors (1 bit) Q: q_scale type (1 bit) V: intra_vlc_format (1 bit) A: alternate scan (1 bit) R: repeat_first_field (1 bit) H: chroma_420_type (1 bit) G: progressive frame (1 bit) D: composite_display_flag (1 bit). If set to 1, next 32 bits following this one contains 12 zeros followed by 20 bits of composite display information. These values are copied from the most recent picture coding extension and are constant for each RTP packet of a given picture. Their meanings are as explained in the MPEG-2 standard.3.5 MPEG Audio-specific header This header shall be attached to each RTP packet at the start of the payload and after any RTP headers for an MPEG1/2 Audio payload type. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MBZ | Frag_offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Frag_offset: Byte offset into the audio frame for the data in this packet.4. Security Considerations RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [3], and any appropriate RTP profile (for example [4]). This implies that confidentiality of the media streams is achieved by encryption. Because the data compression used with this payload format is applied end-to-end, encryption may be performed after compression so there is no conflict between the two operations. A potential denial-of-service threat exists for data encodings using compression techniques that have non-uniform receiver-end computational load. The attacker can inject pathological datagrams into the stream which are complex to decode and cause the receiver to be overloaded. However, this encoding does not exhibit any significant non-uniformity.Hoffman, et. al. Standards Track [Page 10]RFC 2250 RTP Format for MPEG1/MPEG2 Video January 1998 As with any IP-based protocol, in some circumstances a receiver may be overloaded simply by the receipt of too many packets, either desired or undesired. Network-layer authentication may be used to discard packets from undesired sources, but the processing cost of the authentication itself may be too high. In a multicast environment, pruning of specific sources may be implemented in future versions of IGMP [5] and in multicast routing protocols to allow a receiver to select which sources are allowed to reach it. A security review of this payload format found no additional considerations beyond those in the RTP specification.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -