📄 onept_creep.m
字号:
% M-file name: onept_creep.m
% M-file type: Function file
% This function file computes the creep forces and moments acting on the left and the right
% wheels due to the interaction between wheel and rail. This calculation is valid for a single
% point contact condition between the wheel and the rail. The inputs to the function are the
% longitudinal, lateral, and spin creepages and the contact angles. The outputs are the creep
% forces and moments resolved in longitudinal, lateral, and vertical directions.
% Kalker's creep theory is used and spin creep saturation has been taken into account.
% The outputs given by this function are called by the function file 'wheelset.m'.
function [Fcx1,Fcy1,Fcz1,Mcx1,Mcy1,Mcz1,Fcx2,Fcy2,Fcz2,Mcx2,Mcy2,Mcz2]=onept_creep(etax1,etay1,etasp1,etax2,etay2,etasp2,delta1,delta2)
% Parameters used for simulation
% muN: Product of coefficient of friction between wheel and rail (mu) and the normal load on
% the axle (N)
% f11: Lateral creep coefficient (N)
% f12: Lateral/Spin creep coefficient (N-m)
% f22: Spin creep coefficient (N-m2)
% f33: Longitudinal creep coefficient (N)
% Indicating the global nature of the variables. This means that the value of the variables need % not be specified in this function file. This value is automatically obtained from the main file % 'single_wheelset.m'.
global muN f11 f12 f22 f33;
% Computing the creep forces and moments at the left wheel-rail contact patch
fcpx1=-f33*etax1; fcpy1=-f11*etay1-f12*etasp1; mcpz1=f12*etay1-f22*etasp1;
% Creep force saturation
beta=(1/(muN))*sqrt(fcpx1^2+fcpy1^2);
if beta<=3
epsilon=(1/beta)*(beta-beta^2/3+beta^3/27);
else
epsilon=(1/beta);
end
Fcpx1=epsilon*fcpx1; Fcpy1=epsilon*fcpy1; Mcpz1=epsilon*mcpz1;
% Computing the creep forces and moments at the right wheel-rail contact patch
fcpx2=-f33*etax2; fcpy2=-f11*etay2-f12*etasp2; mcpz2=f12*etay2-f22*etasp2;
% Creep force saturation
beta=(1/(muN))*sqrt(fcpx2^2+fcpy2^2);
if beta<=3
epsilon=(1/beta)*(beta-beta^2/3+beta^3/27);
else
epsilon=(1/beta);
end
Fcpx2=epsilon*fcpx2; Fcpy2=epsilon*fcpy2; Mcpz2=epsilon*mcpz2;
% The creep forces and moments calculated above are in the contact patch plane. These forces
% and moments are resolved in the longitudinal, lateral, and vertical directions in the track
% coordinate system. The variables calculated below are passed to the function 'wheelset'.
% Resolving creep forces and moments for the left wheel
Fcx1=Fcpx1;
Fcy1=Fcpy1*cos(delta1);
Fcz1=Fcpy1*sin(delta1);
Mcx1=0;
Mcy1=-Mcpz1*sin(delta1);
Mcz1=Mcpz1*cos(delta1);
% Resolving creep forces and moments for the right wheel
Fcx2=Fcpx2;
Fcy2=Fcpy2*cos(delta2);
Fcz2=-Fcpy2*sin(delta2);
Mcx2=0;
Mcy2=Mcpz2*sin(delta2);
Mcz2=Mcpz2*cos(delta2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -