📄 lu.h
字号:
// -*- c++ -*-//// Copyright 1997, 1998, 1999 University of Notre Dame.// Authors: Andrew Lumsdaine, Jeremy G. Siek, Lie-Quan Lee//// This file is part of the Matrix Template Library//// You should have received a copy of the License Agreement for the// Matrix Template Library along with the software; see the// file LICENSE. If not, contact Office of Research, University of Notre// Dame, Notre Dame, IN 46556.//// Permission to modify the code and to distribute modified code is// granted, provided the text of this NOTICE is retained, a notice that// the code was modified is included with the above COPYRIGHT NOTICE and// with the COPYRIGHT NOTICE in the LICENSE file, and that the LICENSE// file is distributed with the modified code.//// LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.// By way of example, but not limitation, Licensor MAKES NO// REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY// PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS// OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS// OR OTHER RIGHTS.////===========================================================================#ifndef MTL_LU_H#define MTL_LU_H#include "mtl/matrix.h"#include "mtl/mtl.h" /* Note, the calls to copy() for row and column are because I can't use row and column directly in the rank_one_update due to their indexing being in terms of A, not subA I need to create some way to do this in constant time :) */namespace mtl {//: LU Factorization of a general (dense) matrix//// This is the outer product (a level-2 operation) form of the LU// Factorization with pivoting algorithm . This is equivalent to// LAPACK's dgetf2. Also see "Matrix Computations" 3rd Ed. by Golub// and Van Loan section 3.2.5 and especially page 115.// <p>// The pivot indices in ipvt are indexed starting from 1// so that this is compatible with LAPACK (Fortran).////!tparam: DenseMatrix - A dense MTL Matrix//!tparam: Pvector - A Vector with integral element type//!category: algorithms//!component: function//!example: lu_factorization.cctemplate <class DenseMatrix, class Pvector>intlu_factor(DenseMatrix& A, Pvector& ipvt){ typedef typename rows_type<DenseMatrix>::type RowMatrix; typedef typename columns_type<DenseMatrix>::type ColumnMatrix; typedef typename triangle_view<ColumnMatrix, lower>::type Lower; typedef typename triangle_view<RowMatrix, unit_upper>::type Unit_Upper; typedef typename triangle_view<ColumnMatrix, unit_lower>::type Unit_Lower; typedef typename DenseMatrix::value_type T; typedef typename DenseMatrix::size_type sizet; int info = 0; sizet j, jp, M = A.nrows(), N = A.ncols(); Lower D(columns(A)); Unit_Upper U(rows(A)); Unit_Lower L(columns(A)); dense1D<T> c(M), r(N); typename DenseMatrix::submatrix_type subA; typename Lower::iterator dcoli = D.begin(); typename Unit_Upper::iterator rowi = U.begin(); typename Unit_Lower::iterator columni = L.begin(); for (j = 0; j < MTL_MIN(M - 1, N - 1); ++j, ++dcoli, ++rowi, ++columni) { jp = max_abs_index(*dcoli); /* find pivot */ ipvt[j] = jp + 1; if ( A(jp, j) != T(0) ) { /* make sure pivot isn't zero */ if (jp != j) mtl::swap(rows(A)[j], rows(A)[jp]); /* swap the rows */ if (j < M - 1) scale(*columni, T(1) / A(j,j)); /* update column under the pivot */ } else { info = j + 1; break; } if (j < MTL_MIN(M - 1, N - 1)) { subA = A.sub_matrix(j+1, M, j+1, N); /* TODO: Better to have an adaptor here -- A.L. */ copy(*columni, c); copy(*rowi, r); /* translate to submatrix coords */ rank_one_update(subA, scaled(c, T(-1)), r); /* update the submatrix */ } } ipvt[j] = j + 1; return info;}/* For backward compatibility */template <class DenseMatrix, class Pvector>inline intlu_factorize(DenseMatrix& A, Pvector& ipvt){ return lu_factor(A, ipvt);}//: LU Solve//// Solve equation Ax=b, given an LU factored matrix.//// Usage:// <codeblock>// typedef matrix<double, rectangle<>, // dense<>, row_major>::type Matrix;// Matrix LU(A.nrows(), A.ncols());// dense1D<int> pvector(A.nrows());//// copy(A, LU);// lu_factor(LU, pvector);//// // call lu_solve with as many times for the same A as you want// lu_solve(LU, pvector, b, x);// </codeblock>//// Thanks to Valient Gough for this routine!////!tparam: DenseMatrix - A dense MTL Matrix which resulted from calling lu_factor//!tparam: Pvector - A Vector with integral element type, the ipvt vector from lu_factor//!category: algorithms//!component: function//!example: lu_solve.cctemplate <class DenseMatrix, class VectorB, class VectorX, class Pvector>voidlu_solve(const DenseMatrix &LU, const Pvector& pvector, const VectorB &b, VectorX &x){ typedef typename Pvector::size_type p_int; copy(b, x); /* use the permutation vector to modify the starting vector * to account for the permutations in LU */ for(p_int i=0; i < pvector.size(); i++) { p_int perm = pvector[i]-1; // permutations stored in 1's offset if(i != perm) std::swap(x[i], x[perm]); } /* solve Ax = b -> LUx = b -> Ux = L^-1 b * which we solve in two steps * 1) y = L^-1 b * 2) x = U^-1 y */ typename triangle_view<DenseMatrix, unit_lower>::type L(LU); typename triangle_view<DenseMatrix, upper>::type U(LU); tri_solve(L, x); tri_solve(U, x);}//: LU Inverse//// Given an LU factored matrix, construct the inverse of the matrix.//// Thanks to Valient Gough for this routine!////!tparam: DenseMatrixLU - A dense MTL Matrix which resulted from calling lu_factor//!tparam: DenseMatrix = The dense Matrix type used to store the inverse//!tparam: Pvector - A Vector with integral element type, the ipvt vector from lu_factor//!category: algorithms//!component: functiontemplate <class DenseMatrixLU, class DenseMatrix, class Pvector>voidlu_inverse(const DenseMatrixLU& LU, const Pvector& pvector, DenseMatrix& AInv){ typedef typename matrix_traits<DenseMatrixLU>::value_type T; typedef typename Pvector::size_type p_int; dense1D<T> tmp(pvector.size()); dense1D<T> result(pvector.size()); mtl::set(tmp, 0.0); for(p_int i = 0; i < pvector.size(); i++) { tmp[i] = 1.0; lu_solve(LU, pvector, tmp, result); copy(result, columns(AInv)[i]); tmp[i] = 0.0; }}} /* namespace mtl */#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -