⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cfw.c

📁 2440开发板pb4.2增加两个串口需更改的文件。
💻 C
📖 第 1 页 / 共 4 页
字号:
//          calls <f InterruptDone>. The system is not preemtible when this
//          function is called.
//  @xref   <l Overview.Kernel Interrupt Support> <f InterruptDone>
//  
//------------------------------------------------------------------------------
void 
OEMInterruptDone(DWORD idInt)	// @parm Interrupt ID. See <t Interrupt ID's>
                    			// for the list of possible values.
{
	volatile INTreg *s2440INT	= (INTreg *)INT_BASE;
	volatile IOPreg *s2440IOP	= (IOPreg *)IOP_BASE;    

	INTERRUPTS_OFF();
	
	switch (idInt) 
	{

    case SYSINTR_DMA0:
        s2440INT->rINTMSK &= ~BIT_DMA0; // SDIO DMA interrupt
		//RETAILMSG(1,(TEXT("::: SYSINTR_DMA0    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_SDMMC:
		s2440INT->rINTMSK &= ~BIT_MMC;
		//RETAILMSG(1,(TEXT("::: SYSINTR_SDMMC    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_SDMMC_SDIO_INTERRUPT:
		s2440INT->rINTMSK &= ~BIT_MMC;
		//RETAILMSG(1,(TEXT("::: SYSINTR_SDMMC_SDIO_INTERRUPT    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_SDMMC_CARD_DETECT:
#if SDIO_FOR_100BD		// for b'd revision 1.00
		s2440IOP->rEINTPEND  = (1<<18);
		s2440IOP->rEINTMASK &= ~(1 << 18);
		//RETAILMSG(1,(TEXT("::: SYSINTR_SDMMC_CARD_DETECT    OEMInterruptDone\r\n")));
#else					// for b'd revision 0.17
		s2440IOP->rEINTPEND  = (1<<16);
		s2440IOP->rEINTMASK &= ~(1 << 16);
#endif
		s2440INT->rINTMSK   &= ~BIT_EINT8_23;
		break;        

    case SYSINTR_TOUCH:
        /*
         * Nothing has to be done here as interrupts are masked and unmasked by the touch
         * handler in the HAL.
         */
		s2440INT->rINTMSK &= ~BIT_TIMER1;
        break;

    case SYSINTR_TOUCH_CHANGED:
        /*
         * Nothing has to be done here as interrupts are masked and unmasked by the touch
         * handler in the HAL.
         */
		s2440INT->rINTMSK &= ~BIT_ADC;
		s2440INT->rINTSUBMSK &= ~INTSUB_TC;
		//RETAILMSG(0,(TEXT("OEMInterruptDone:TOUCH CHANGED\n\r\n")));
        break;

	case SYSINTR_KEYBOARD:
		s2440INT->rINTMSK &= ~BIT_EINT1;
		break;

	case SYSINTR_SERIAL:
		s2440INT->rINTMSK    &= ~BIT_UART0;
		s2440INT->rINTSUBMSK &= ~INTSUB_RXD0;
		break;

	case SYSINTR_SERIAL2:
		s2440INT->rINTMSK    &= ~BIT_UART1;
		s2440INT->rINTSUBMSK &= ~INTSUB_RXD1;
		break;

	case SYSINTR_SERIAL3:
		s2440INT->rINTMSK    &= ~BIT_UART2;
		s2440INT->rINTSUBMSK &= ~INTSUB_RXD2;
		break;

	case SYSINTR_AUDIO:
		// DMA1 is for audio input.
		// DMA2 is for audio output.
		s2440INT->rSRCPND = (BIT_DMA1 | BIT_DMA2); 
		if (s2440INT->rINTPND & BIT_DMA1) s2440INT->rINTPND = BIT_DMA1;
		if (s2440INT->rINTPND & BIT_DMA2) s2440INT->rINTPND = BIT_DMA2;
        s2440INT->rINTMSK &= ~BIT_DMA1;
        s2440INT->rINTMSK &= ~BIT_DMA2;
		break;

	case SYSINTR_ADC:
		break;

	case SYSINTR_PCMCIA_LEVEL:
		s2440INT->rSRCPND	= BIT_EINT8_23;
		if (s2440INT->rINTPND & BIT_EINT8_23) s2440INT->rINTPND = BIT_EINT8_23; 
		s2440INT->rINTMSK   &= ~BIT_EINT8_23;
		s2440IOP->rEINTMASK &= ~(1<<8);
		//RETAILMSG(1,(TEXT("::: SYSINTR_PCMCIA_LEVEL    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_PCMCIA_EDGE:
		//RETAILMSG(1,(TEXT("::: SYSINTR_PCMCIA_EDGE    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_PCMCIA_STATE:
		s2440INT->rINTMSK &= ~BIT_EINT3;
		//RETAILMSG(1,(TEXT("::: SYSINTR_PCMCIA_STATE    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_ETHER:
		s2440INT->rINTMSK   &= ~BIT_EINT8_23;
		s2440IOP->rEINTMASK &= ~0x200;
		//RETAILMSG(1, (TEXT("::: SYSINTR_USBD	OEMInterruptDone\r\n")));
		break;
    case SYSINTR_DM9000:		// Ethernet on EINT14.
		s2440INT->rINTMSK   &= ~BIT_EINT8_23;
		s2440IOP->rEINTMASK &= ~0x4000;
		//RETAILMSG(1, (TEXT("::: SYSINTR_DM9000 OEMInterruptDone\r\n")));
		break;
			        
	case SYSINTR_USB:
		s2440INT->rINTMSK &= ~BIT_USBH;
		break;

	case SYSINTR_USBD:
		s2440INT->rINTMSK &= ~BIT_USBD;
		//RETAILMSG(1,(TEXT("::: SYSINTR_USBD    OEMInterruptDone\r\n")));
		break;
        
	case SYSINTR_POWER:
		s2440INT->rSRCPND = BIT_EINT0;
		// S3C2440X Developer Notice (page 4) warns against writing a 1 to a 0 bit in the INTPND register.
		if (s2440INT->rINTPND & BIT_EINT0) s2440INT->rINTPND = BIT_EINT0;
		s2440INT->rINTMSK &= ~BIT_EINT0;
		s2440INT->rSRCPND = BIT_EINT2;
		// S3C2440X Developer Notice (page 4) warns against writing a 1 to a 0 bit in the INTPND register.
		if (s2440INT->rINTPND & BIT_EINT2) s2440INT->rINTPND = BIT_EINT2;
		s2440INT->rINTMSK &= ~BIT_EINT2;
		break;

	case SYSINTR_CAM:
		s2440INT->rSUBSRCPND = INTSUB_CAM_P;
		s2440INT->rSUBSRCPND = INTSUB_CAM_C;
		s2440INT->rSRCPND = BIT_CAM;

		if (s2440INT->rINTPND & BIT_CAM)
		{
			s2440INT->rINTPND = BIT_CAM;
		}
		s2440INT->rINTSUBMSK &= ~(INTSUB_CAM_P | INTSUB_CAM_C);
		s2440INT->rINTMSK &= ~BIT_CAM;
		break;

    case SYSINTR_IIC:
        s2440INT->rINTMSK &= ~BIT_IIC;
       break;

	}
    INTERRUPTS_ON();	
}


//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
BOOL 
OEMGetExtensionDRAM(
    LPDWORD lpMemStart, 
    LPDWORD lpMemLen
    ) 
{
    return FALSE; // no extension DRAM
}


//------------------------------------------------------------------------------
//
//  OEMQueryPerformanceCounter
//  
//      The OEMQueryPerformanceCounter function retrieves the current value of 
//      the high-resolution performance counter, if one exists. 
//  
//  BOOL QueryPerformanceCounter(
//  
//      LARGE_INTEGER  *lpliPerformanceCount    // address of current counter value
//     );   
//  
//  Parameters
//  
//  lpliPerformanceCount
//  
//      Points to a variable that the function sets, in counts, to the current 
//      performance-counter value. If the installed hardware does not support 
//      a high-resolution performance counter, this parameter can be to zero. 
//  
//  Return Value
//  
//      If the installed hardware supports a high-resolution performance 
//      counter, the return value is TRUE.
//      If the installed hardware does not support a high-resolution 
//      performance counter, the return value is FALSE.   
//  
//  If this function is implemented by the OEM, the pointer pQueryPerformanceCounter
//  should be initialized as follows:
//  
//  BOOL (*pQueryPerformanceCounter)(LARGE_INTEGER *lpliPerformanceCount)=OEMQueryPerformanceCounter;
//
//------------------------------------------------------------------------------
BOOL 
OEMQueryPerformanceCounter(
    LARGE_INTEGER *lpliPerformanceCount
    )
{
    extern DWORD PerfCountSinceTick();
    
    ULARGE_INTEGER liBase;
    DWORD dwCurCount;

	// Make sure CurTicks is the same before and after read of counter to account for
	// possible rollover
    do {
        liBase = CurTicks;
        dwCurCount = PerfCountSinceTick();
    } while  (liBase.LowPart != CurTicks.LowPart) ;  

    lpliPerformanceCount->QuadPart = liBase.QuadPart + dwCurCount;
    
    return TRUE;
}



//------------------------------------------------------------------------------
//
//  OEMQueryPerformanceFrequency
//  
//      The OEMQueryPerformanceFrequency function retrieves the frequency of 
//      the high-resolution performance counter, if one exists. 
//  
//  BOOL OEMQueryPerformanceFrequency(
//  
//      LARGE_INTEGER  *lpliPerformanceFreq     // address of current frequency
//     );   
//  
//  Parameters
//  
//  lpliPerformanceFreq
//  
//      Points to a variable that the function sets, in counts per second, to 
//      the current performance-counter frequency. If the installed hardware 
//      does not support a high-resolution performance counter, this parameter
//      can be to zero. 
//  
//  Return Value
//  
//      If the installed hardware supports a high-resolution performance 
//      counter, the return value is TRUE.
//      If the installed hardware does not support a high-resolution 
//      performance counter, the return value is FALSE.
//  
//  If this function is implemented by the OEM, the pointer pQueryPerformanceFrequency
//  should be initialized as follows:
//  
//  BOOL (*pQueryPerformanceFrequency)(LARGE_INTEGER *lpPerformanceFrequency)=OEMQueryPerformanceFrequency;
//
//------------------------------------------------------------------------------
BOOL 
OEMQueryPerformanceFrequency(
    LARGE_INTEGER *lpliPerformanceFreq
    ) 
{
    extern DWORD PerfCountFreq();
    
    lpliPerformanceFreq->HighPart = 0;
    lpliPerformanceFreq->LowPart  = PerfCountFreq();
    return TRUE;
}

// set pointers to OEM functions
BOOL (*pQueryPerformanceCounter)(LARGE_INTEGER *lpliPerformanceCount)=OEMQueryPerformanceCounter;
BOOL (*pQueryPerformanceFrequency)(LARGE_INTEGER *lpliPerformanceFreq)=OEMQueryPerformanceFrequency;


//
// CPU-specific functions for OEMIdle
//
extern void  CPUEnterIdle(DWORD dwIdleParam);
extern DWORD CPUGetSysTimerCountMax(DWORD dwIdleMSecRequested);
extern void  CPUSetSysTimerCount(DWORD dwIdleMSec);
extern BOOL CPUClearSysTimerIRQ(void);


//
// dougfir or later
//
extern DWORD
CPUGetSysTimerCountElapsed(
    DWORD dwTimerCountdownMSec,
    volatile DWORD *pCurMSec,
    DWORD *pPartialCurMSec,
    volatile ULARGE_INTEGER *pCurTicks
    );

//------------------------------------------------------------------------------
//
//  This routine is called by the kernel when there are no threads ready to
//  run. The CPU should be put into a reduced power mode and halted. It is 
//  important to be able to resume execution quickly upon receiving an interrupt.
//  Note: It is assumed that interrupts are off when OEMIdle is called.  Interrrupts
//  are turned off when OEMIdle returns.
//
//------------------------------------------------------------------------------
static DWORD dwPartialCurMSec = 0;		// Keep CPU-specific sub-millisecond leftover.
void
OEMIdle( DWORD dwIdleParam )
{
	DWORD dwIdleMSec;
	DWORD dwPrevMSec = *pCurMSec;

	// Use for 64-bit math
	ULARGE_INTEGER currIdle = { curridlelow, curridlehigh };

	if ((int) (dwIdleMSec = dwReschedTime - dwPrevMSec) <= 0) 
	{
		return;				// already time to wakeup
	}

	// just idle till tick if profiling or running iltiming
	if (bProfileTimerRunning || fIntrTime)	// fIntrTime : Interrupt Latency timeing.
	{
		// idle till end of 'tick'
		CPUEnterIdle(dwIdleParam);

		// Update global idle time and return
		currIdle.QuadPart += RESCHED_PERIOD;
		curridlelow = currIdle.LowPart;
		curridlehigh = currIdle.HighPart;
        
		return;
	}

	//
	// Since OEMIdle( ) is being called in the middle of a normal reschedule
	// period, CurMSec, dwPartialCurMSec, and CurTicks need to be updated accordingly.
	// Once we reach this point, we must re-program the timer (if we ever did) 
	// because dwPartialCurMSec will be modified in the next function call.
	//
	CPUGetSysTimerCountElapsed(RESCHED_PERIOD, pCurMSec, &dwPartialCurMSec, pCurTicks);

	if ((int) (dwIdleMSec -= *pCurMSec - dwPrevMSec) > 0)
	{
		dwPrevMSec = *pCurMSec;

		//
		// The system timer may not be capable of arbitrary timeouts. Get the
		// CPU-specific highest possible timeout available.
		//
		dwIdleMSec = CPUGetSysTimerCountMax(dwIdleMSec);

		//
		// Set the timer to wake up much later than usual, if needed.
		//
		CPUSetSysTimerCount(dwIdleMSec);
		CPUClearSysTimerIRQ( );

		//
		// Enable wakeup on any interrupt, then go to sleep.
		//
//		DEBUGMSG(1, (TEXT("OEMIDle  \r\n")));
		CPUEnterIdle(dwIdleParam);
		INTERRUPTS_OFF( );
        

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -