📄 longtree.java
字号:
*/ public int getIndexOfChild(long parentKey, long childKey) { int parentIndex = findKey(parentKey, (char)1); int index = 0; char siblingIndex = leftChildren[new Long(parentIndex).intValue()]; if (siblingIndex == 0) { return -1; } while (keys[siblingIndex] != childKey) { index++; siblingIndex = rightSiblings[siblingIndex]; if (siblingIndex == 0) { return -1; } } return index; } /** * Returns the depth in the tree that the element can be found at or -1 * if the element is not in the tree. For example, the root element is * depth 0, direct children of the root element are depth 1, etc. * * @param key the key to find the depth for. * @return the depth of <tt>key</tt> in the tree hiearchy. */ public int getDepth(long key) { int [] depth = { 0 }; if (findDepth(key, (char)1, depth) == 0) { return -1; } return depth[0]; } /** * Returns the keys in the in the tree in depth-first order. For example, * give the tree: * * <pre> * 1 * |-- 3 * |-- |-- 4 * |-- |-- |-- 7 * |-- |-- 6 * |-- 5 * </pre> * * Then this method would return the sequence: 1, 3, 4, 7, 6, 5. * * @return the keys of the tree in depth-first order. */ public long [] getRecursiveKeys() { char startIndex = 1; long [] depthKeys = new long[nextIndex-1]; depthKeys[0] = keys[startIndex]; int cursor = 1; // Iterate through each sibling, filling the depthKeys array up. char siblingIndex = leftChildren[startIndex]; while (siblingIndex != 0) { cursor = fillDepthKeys(siblingIndex, depthKeys, cursor); // Move to next sibling siblingIndex = rightSiblings[siblingIndex]; } return depthKeys; } /** * Returns the keys in the in the tree in depth-first order. For example, * give the tree: * * <pre> * 1 * |-- 3 * |-- |-- 4 * |-- |-- |-- 7 * |-- |-- 6 * |-- 5 * </pre> * * Then this method would return the sequence: 1, 3, 4, 7, 6, 5. * * @param parentKey the parent key to get children of. * @return the keys of the tree in depth-first order. */ public long[] getRecursiveChildren(long parentKey) { char startIndex = findKey(parentKey, (char)1); long [] depthKeys = new long[nextIndex-1]; int cursor = 0; // Iterate through each sibling, filling the depthKeys array up. char siblingIndex = leftChildren[startIndex]; while (siblingIndex != 0) { cursor = fillDepthKeys(siblingIndex, depthKeys, cursor); // Move to next sibling siblingIndex = rightSiblings[siblingIndex]; } // The cursor variable represents how many keys were actually copied // into the depth key buffer. Create a new array of the correct size. long [] dKeys = new long[cursor]; for (int i=0; i<cursor; i++) { dKeys[i] = depthKeys[i]; } return dKeys; } /** * Returns true if the tree node is a leaf. * * @return true if <code>key</code> has no children. */ public boolean isLeaf(long key) { int keyIndex = findKey(key, (char)1); if (keyIndex == 0) { return false; } return (leftChildren[keyIndex] == 0); } /** * Returns the keys in the tree. */ public long[] keys() { long [] k = new long[nextIndex-1]; for (int i=0; i<k.length; i++) { k[i] = keys[i]; } return k; } public int getCachedSize() { int size = 0; size += CacheSizes.sizeOfObject() * 3; size += CacheSizes.sizeOfLong() * keys.length; size += CacheSizes.sizeOfChar() * keys.length * 2; size += CacheSizes.sizeOfChar(); return size; } public void writeExternal(ObjectOutput out) throws IOException { out.writeObject(keys); out.writeObject(leftChildren); out.writeObject(rightSiblings); out.writeChar(nextIndex); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { this.keys = (long [])in.readObject(); this.leftChildren = (char [])in.readObject(); this.rightSiblings = (char [])in.readObject(); this.nextIndex = in.readChar(); } /** * Returns the index of the specified value, or 0 if the key could not be * found. Tail recursion was removed, but not the other recursive step. * Using a stack instead often isn't even faster under Java. * * @param value the key to search for. * @param startIndex the index in the tree to start searching at. Pass in * the root index to search the entire tree. */ private char findKey(long value, char startIndex) { if (startIndex == 0) { return 0; } if (keys[startIndex] == value) { return startIndex; } char siblingIndex = leftChildren[startIndex]; while (siblingIndex != 0) { char recursiveIndex = findKey(value, siblingIndex); if (recursiveIndex != 0) { return recursiveIndex; } else { siblingIndex = rightSiblings[siblingIndex]; } } return 0; } /** * Identical to the findKey method, but it also keeps track of the * depth. */ private char findDepth(long value, char startIndex, int [] depth) { if (startIndex == 0) { return 0; } if (keys[startIndex] == value) { return startIndex; } char siblingIndex = leftChildren[startIndex]; while (siblingIndex != 0) { depth[0]++; char recursiveIndex = findDepth(value, siblingIndex, depth); if (recursiveIndex != 0) { return recursiveIndex; } else { depth[0]--; siblingIndex = rightSiblings[siblingIndex]; } } return 0; } /** * Recursive method that fills the depthKeys array with all the child keys in * the tree in depth first order. * * @param startIndex the starting index for the current recursive iteration. * @param depthKeys the array of depth-first keys that is being filled. * @param cursor the current index in the depthKeys array. * @return the new cursor value after a recursive run. */ private int fillDepthKeys(char startIndex, long [] depthKeys, int cursor) { depthKeys[cursor] = keys[startIndex]; cursor++; char siblingIndex = leftChildren[startIndex]; while (siblingIndex != 0) { cursor = fillDepthKeys(siblingIndex, depthKeys, cursor); // Move to next sibling siblingIndex = rightSiblings[siblingIndex]; } return cursor; } /** * Returs the left sibling index of index. There is no easy way to find a * left sibling. Therefore, we are forced to linearly scan the rightSiblings * array until we encounter a reference to index. We'll make the assumption * that entries are added in order since that assumption can yield big * performance gain if it's true (and no real performance hit otherwise). */ private char getLeftSiblingIndex(char index) { //First, search backwards throw rightSiblings array for (int i=index-1; i>=0; i--) { if (rightSiblings[i] == index) { return (char)i; } } //Now, search forwards for (int i=index+1; i<rightSiblings.length; i++) { if (rightSiblings[i] == index) { return (char)i; } } //No sibling found, give up. return (char)0; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -