📄 post.vhd
字号:
---- post.vhd---- Cordic post-processing block---- Compensate cordic algorithm K-factor; divide Radius by 1.165. -- Actual implementation: Radius := Ri * 0.859---- Position calculated angle in correct quadrant.--library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;entity post is port( clk : in std_logic; ena : in std_logic; Ai : in std_logic_vector(15 downto 0); Ri : in std_logic_vector(19 downto 0); Q : in std_logic_vector(2 downto 0); Ao : out std_logic_vector(15 downto 0); Ro : out std_logic_vector(19 downto 0)); constant cPI2 : natural := 2**14; -- Pi/2 = 0x4000 constant cPI : natural := 2**15; -- Pi/2 = 0x8000 constant c2PI : natural := 2**16; -- Pi = 0x10000 = 0x0000end entity post;architecture dataflow of post isbegin radius: block signal RadA, RadB, RadC : natural range 0 to 2**20; begin process(clk) variable tmp : natural; begin tmp := conv_integer( unsigned(Ri) ); if (clk'event and clk = '1') then if (ena = '1') then RadA <= tmp - (tmp / 8); RadB <= RadA - (RadA / 64); RadC <= RadB - (RadB / 512); end if; end if; end process; -- assign output Ro <= std_logic_vector(conv_unsigned(RadC, 20)); end block radius; angle: block signal dQ : std_logic_vector(2 downto 1); signal ddQ : std_logic; signal AngStep1 : unsigned(14 downto 0); signal AngStep2 : unsigned(15 downto 0); signal AngStep3 : unsigned(16 downto 0); begin angle_step1: process(clk) variable overflow : std_logic; variable AngA, AngB, Ang : unsigned(14 downto 0); begin -- check if angle is negative, if so set it to zero overflow := Ai(14) and Ai(13); if (overflow = '1') then Anga := (others => '0'); else AngA := unsigned('0' & Ai(13 downto 0)); end if; -- step 1: Xabs and Yabs are swapped -- Calculated angle is the angle between vector and Y-axis. -- ActualAngle = PI/2 - CalculatedAngle AngB := cPI2 - AngA; if (Q(0) = '1') then Ang := AngB; else Ang := AngA; end if; if (clk'event and clk = '1') then if (ena = '1') then AngStep1 <= Ang; dQ <= q(2 downto 1); end if; end if; end process angle_step1; angle_step2: process(clk) variable AngA, AngB, Ang : unsigned(15 downto 0); begin AngA := ('0' & AngStep1); -- step 2: Xvalue is negative -- Actual angle is in the second or third quadrant -- ActualAngle = PI - CalculatedAngle AngB := cPI - AngA; if (dQ(1) = '1') then Ang := AngB; else Ang := AngA; end if; if (clk'event and clk = '1') then if (ena = '1') then AngStep2 <= Ang; ddQ <= dQ(2); end if; end if; end process angle_step2; angle_step3: process(clk) variable AngA, AngB, Ang : unsigned(16 downto 0); begin AngA := ('0' & AngStep2); -- step 3: Yvalue is negative -- Actual angle is in the third or fourth quadrant -- ActualAngle = 2PI - CalculatedAngle AngB := c2PI - AngA; if (ddQ = '1') then Ang := AngB; else Ang := AngA; end if; if (clk'event and clk = '1') then if (ena = '1') then AngStep3 <= Ang; end if; end if; end process angle_step3; Ao <= std_logic_vector( AngStep3(15 downto 0) ); end block angle;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -