📄 pr3_34.m
字号:
%Problem 3.34;
%Illustrates principle of frequency diversity;
clear all; close all;
t=[1:3000]/1000; %time scale;
f0=[25.1,35.12]; %carrier frequency;
S=ones(2,1)*exp(-16*(t-1.5).^2); Sbp=real(S.*exp(i*2*pi*f0'*t)); %signal envelope and bandpass signals of two frequencies;
TP=(unidrnd(100,1,10)-1)/100; %tau profile the same for both branches: diversity is done by transmitting at two carriers;
for k=1:2 %in the loop resulting signals are calculated at the outputs of two frequency diversity branches;
YL=num2str(k);
YL1=['sent sig freq ',YL];
subplot(3,2,k); plot(t,Sbp(k,:)); ylim([-1.2 1.2]); xlabel('t/T'); ylabel(YL1); grid; %plotting sent signal of k-th carrier;
AR=abs(sum(exp(i*2*pi*f0(k)*TP))); %k-th resulting real amplitude;
Sbpres=AR*Sbp(k,:); %resulting signal of k-th diversity branch;
YL2=['rec sig freq ',YL];
subplot(3,2,k+2); stem(TP); xlim([0 11]); xlabel('Nmb of path'); ylabel('tau profile'); %plotting tau-profile;
subplot(3,2,k+4); plot(t,Sbpres); ylim([-7 7]); xlabel('t/T'); ylabel(YL2); grid; %plotting resultant signal of k-th branch;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -