📄 mifa.cpp
字号:
/***********************************************************/
/* 幂法求矩阵的最大特征值和特征向量Mifa1(),Mifa2() */
/* 反幂法求矩阵的最小特征值和特征向量Fmifa() */
/*
/*
/***********************************************************/
#include "stdio.h"
#include "math.h"
#define n 3
double x[n];//方程组的解
////////////打印函数/////////////
void print(double A[n][n])
{
printf("A is:\n");
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
printf("%8.3f,",A[i][j]);
if(j==n-1) printf("\n");
}
}
int sign(double x)
{
if(x>0) return 1;
else if(x<0) return -1;
else return 0;
}
void print1(char ar[2],double *arr)
{
printf("%s is:",ar);
for(int j=0;j<n;j++)
{
if(j==0) printf("\t[");
printf("%14.9f",*(arr+j));
if(j!=n-1) printf(",");
else printf("\t]");
}
printf("\n");
}
///////求数组的最大值////////////
int Max2(int k1,double *array)
{
double max=0;
int maxnum=0;
for(int kk=k1-1;kk<n;kk++)
if(max<fabs(*(array+kk))) {max=fabs(*(array+kk));maxnum=kk;}
printf("maxnum is %d,max is %5.3f\n",maxnum,max);
return maxnum;
}
//////////////doolittle分解算法//////////////
void Doolittle(double A[n][n],double b[n])
{
int M[n];//用于记录第k个主元素所在的行号
int k;
int i,t,j;
double S[n];//中间量
double y[n];
double temp=0;
double B[n][n],b1[n];
int ik;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
B[i][j]=A[i][j];
b1[i]=b[i];
}
for(k=1;k<=n;k++)
{
//计算中间量si
for(i=k;i<=n;i++)
{
for(t=1,temp=0;t<=k-1;t++)
{
temp=temp+A[i-1][t-1]*A[t-1][k-1];
}
S[i-1]=A[i-1][k-1]-temp;
A[i-1][k-1]=S[i-1];
//print();
}
ik=Max2(k,S);//(2)选行号ik
M[k-1]=ik;
printf("ik=%d,k-1=%d\n",ik,k-1);
if(ik!=k-1)//(3)
{
for(int j=1;j<=n;j++)
{temp=A[k-1][j-1];A[k-1][j-1]=A[ik][j-1];A[ik][j-1]=temp;}
//print();
}
//////(4)计算ukk,ukj,lik//////
for(int j=k+1;j<=n;j++)
{
for(t=1,temp=0;t<=k-1;t++)
{
temp=temp+A[k-1][t-1]*A[t-1][j-1];
}
A[k-1][j-1]=A[k-1][j-1]-temp;//计算ukj
A[j-1][k-1]=A[j-1][k-1]/A[k-1][k-1];//计算lik
//print();
}
}
//print(A);
// print2("M",M);
//求Qb
for(k=1;k<=n;k++)
{
int tt;
tt=M[k-1];
temp=b[k-1];b[k-1]=b[tt];b[tt]=temp;
}
print1("b",b);
//求解Ly=Qb和Ux=y
y[0]=b[0];//y1
for(i=2;i<=n;i++)
{
for(t=1,temp=0;t<=i-1;t++)
{
temp=temp+A[i-1][t-1]*y[t-1];
}
y[i-1]=b[i-1]-temp;//yi
}
print1("y",y);
x[n-1]=y[n-1]/A[n-1][n-1];//xn
for(i=n-1;i>=1;i--)
{
for(t=i+1,temp=0;t<=n;t++)
{
temp=temp+A[i-1][t-1]*x[t-1];
}
x[i-1]=(y[i-1]-temp)/A[i-1][i-1];//xi
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
A[i][j]=B[i][j];
b[i]=b1[i];
}
print1("x",x);
}
///////求数组的最大值////////////
int arraymax(double *array)
{
double max=0;
int maxnum=0;
for(int kk=0;kk<n;kk++)
if(max<fabs(*(array+kk))) {max=fabs(*(array+kk));maxnum=kk;}
printf("maxnum is %d,max is %8.6f\n",maxnum,max);
return maxnum;
}
double neiji(double arr1[n],double arr2[n])
{
double value=0;
for(int i=0;i<n;i++)
value=value+arr1[i]*arr2[i];
return value;
}
//第一种迭代方法
void MiFa1(double A[n][n],double ee)
{
int i,j;
int count=0;
double temp=0;
double u[n];
double y[n],yita,beita1,beita=0;
for(i=0;i<n;i++)
{
if(i==0) u[i]=1;
else u[i]=0;
}
print(A);
//print();//print array G[n][n];
while(1)
{
beita1=beita;
yita=sqrt(neiji(u,u));
for(i=0;i<n;i++)
y[i]=u[i]/yita;//求yk-1
for(i=0;i<n;i++)
{
temp=0;
for(j=0;j<n;j++)
temp=temp+A[i][j]*y[j];
u[i]=temp;//求uk
}
beita=neiji(y,u);
print1("u",u);
print1("y",y);
printf("beita is %11.6f\n",beita);
count++;
if(fabs(beita-beita1)/fabs(beita)<=ee) break;
}
printf("count is:%d\n",count);
printf("nanmuda is %11.6f\n",beita);
print1("tezhenxiangliang",y);
}
//第二种迭代方法
void MiFa2(double A[n][n],double ee)
{
int i,j;
int count=0;
double temp=0;
int rnum;//模最大分量号
double hr;//模最大分量
double u[n];
double y[n],beita1,beita=0;
for(i=0;i<n;i++)
{
if(i==0) u[i]=1;
else u[i]=0;
}
print(A);
//print();//print array G[n][n];
while(1)
{
beita1=beita;
rnum=arraymax(u);
hr=u[rnum];
for(i=0;i<n;i++)
y[i]=u[i]/fabs(hr);//求yk-1
for(i=0;i<n;i++)
{
temp=0;
for(j=0;j<n;j++)
temp=temp+A[i][j]*y[j];
u[i]=temp;//求uk
}
beita=sign(hr)*u[rnum];
print1("u",u);
print1("y",y);
printf("beita is %11.6f\n",beita);
count++;
if(fabs(beita-beita1)/fabs(beita)<=ee) break;
}
printf("count is:%d\n",count);
printf("nanmuda is %11.6f\n",beita);
print1("tezhenxiangliang",y);
}
//反幂法
void Fmifa(double A[n][n],double ee)
{
int i;
int count=0;
double temp=0;
double u[n]={1,0,0};
double y[n],yita,beita1,beita=0;
//for(i=0;i<n;i++)
//u[i]=1;
print(A);
//print();//print array G[n][n];
while(1)
{
beita1=beita;
yita=sqrt(neiji(u,u));
//printf("yita is %12.6f\n",yita);
for(i=0;i<n;i++)
y[i]=u[i]/yita;//求yk-1
//Gauss(A,y);//求uk
Doolittle(A,y);
print(A);
//print1("x",x);
for(i=0;i<n;i++)
u[i]=x[i];
beita=neiji(y,u);
print1("u",u);
print1("y",y);
printf("beita is %11.6f\n",beita);
count++;
if(fabs(1/beita-1/beita1)/fabs(1/beita)<=ee) break;
}
printf("count is:%d\n",count);
printf("nanmuda is %11.6f\n",1/beita);
print1("tezhenxiangliang",y);
}
int main(int argc, char* argv[])
{
double A[n][n]={6,-12,6,-21,-3,24,-12,-12,51};
//double A1[n][n]={5,30,-48,3,14,-24,3,15,-25};
double A2[n][n]={2,3,2,10,3,4,3,6,1};
double A3[n][n]={-8,1,0,1,-8,-3,0,-3,-1};
//double A[n][n]={{0.012,0.01,0.167},{1,0.8334,5.91},{3200,1200,4.2}};
//double b[n]={0.6781,12.1,981};
//MiFa1(A,0.0001);
//MiFa1(A2,0.0001);
Fmifa(A3,0.0001);
//Fmifa(A2,0.0005);
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -