📄 ardeglch.m
字号:
function [labs,resids] = ardeglch(data, inlabels, modelorder, iqrcrit)% labs = arresid(data, inlabels, modelorder, iqrcrit)% identifies outliers in a time series by% looking at the residuals of a forward and% backward AR fit.% Excludes from the fit beats labeled 0 in <inlabels>% iqrcrit gives the criteria in inter-quartile range units% for an outlier.% Returns a vector of the same length as the data which% contains a 0 for any beat marked as bad either in inlabels% or from the AR fit.% [labs,resids] = ardeglch...% gives the actual values of the residuals as an optional second argumentif nargin < 3 modelorder = 3;endif nargin < 4 iqrcrit = 3.5;end% fit the forward modellabforward = arresid(data, inlabels, modelorder);% fit the backward modellabbackward = arresid( data((length(data)):-1:1), inlabels((length(data)):-1:1), modelorder);% take the smaller of the two residuals, remembering% to put labbackward back in forward order.labels = min(labforward, labbackward(length(data):-1:1) );resids = labels;% Compute the interquartile range and limits for outliers.lims = prctile(labels,[25 50 75]);iqrange = lims(3) - lims(1);bottom = lims(1) - iqrange*iqrcrit;top = lims(3) + iqrange*iqrcrit;% bogus points are marked as 666666 in <labels> or as 0 in <inlabels>labs = (labels > bottom & labels < top & labels ~= 666666 & inlabels ~= 0 );
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -