📄 step_response.m
字号:
function xfinal = step_response(A,Ainv,b,tf)
% Compute the `step response` of the affine system.
%
% Syntax:
% "xfinal = step_response(A,Ainv,b,tf)"
%
% Description:
% Compute the final value of the state vector "x" at the final time "tf"
% for the affine dynamics "dx/dt = A*x + b". The inputs are
%
% * "A": the system matrix
%
% * "Ainv": the inverse of "A" if it exists, otherwsie it should be
% "[]"
%
% * "b": constant input vector for the affine dynamics
%
% * "tf": final time for the step response
%
% The final value of "x" is computed by evaluating the expression
%
%
%
% "x(tf) = e^{A*tf}*x(0) + e^{A*tf} * integral_{s=0}^{s=tf} e^{-A*s}*b ds"
%
%
%
% Implementation:
% If "A" is invertible, then the above integral reduces to
%
%
%
% "x(tf) = (e^{A*tf}-I)*Ainv*b".
%
%
%
% Otherwise, the value of "x(tf)" can be obtained by calling the ODE
% solver to integrate the system equation "dx/dt = A*x + b" using the `ode
% file` "affine.m" from time "0" to "tf".
global GLOBAL_ODE_PAR
if (tf == 0) | all(b == 0)
xfinal = zeros(size(b));
else
if ~isempty(Ainv)
% if A is invertible, then use the closed form solution
xfinal = (expm(A*tf)-eye(size(A)))*Ainv*b;
else
% otherwise, perform numerical integration to get the final value of
% the step response
% Alternative method, use ode45 to integrate the step response
[T,Y] = ode45('affine',[0 tf],zeros(size(A,1),1),GLOBAL_ODE_PAR,A,b);
xfinal = Y(length(T),:)';
end
end
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -