📄 transform.m
字号:
function CON = transform(CON,T,v)
% Apply affine transformation Tx + v to a linear constraint object, where
% T is an n by n matrix and v is a constant vector
%
% Syntax:
% "C = transform(con,T,v)"
%
% Description:
% "transform(con,T,v)" returns a linear constraint object representing
% the constraint set "con" with respect to the transformed variable
% "y = Tx + v".
%
% Examples:
% Given the linear constraint object "con" representing a cube with
% corners at (x1,x2,x3) triples (2,1,0), (2,1,2), (2,3,0), (2,3,2),
% (4,3,0), (4,3,2), (4,1,0), and (4,1,2),
%
%
%
% "T = [0.5 0 0;0 0.25 0;0 0 1]; v = [0 0 2]';"
%
% "C = transform(con,T,v)"
%
%
%
% returns "C", a linear constraint object representing the cube with
% corners at (x1,x2,x3) triples (1,0.25,2), (1,0.25,4), (1,0.75,2),
% (1,0.75,4), (2,0.75,2), (2,0.75,4), (2,0.25,2), and (2,0.25,4).
%
% See Also:
% linearcon,vertices,transform
% Test whether T has full rang. In this case we transform the
% hyperplanes, otherwise the vertices.
if rank(T)==size(T,2)
CE = CON.CE; dE = CON.dE;
CI = CON.CI; dI = CON.dI;
[CE,dE] = transform_hyperplanes(CE,dE,T,v);
[CI,dI] = transform_hyperplanes(CI,dI,T,v);
CON = linearcon(CE,dE,CI,dI);
else
vert=vertices(CON);
for i=1:length(vert)
Tvert(:,i)=T*vert(i)+v;
end;
CON =linearcon(polyhedron(Tvert));
end;
return
function [C,d] = transform_hyperplanes(C,d,T,v)
Ti = inv(T);
for k = 1:size(C,1)
% update the normal vector and the constant for the
% hyperplane representing each face
ck = C(k,:)*Ti;
dk = d(k) + ck*v;
norm_ck = sqrt(ck*ck');
C(k,:) = ck/norm_ck;
d(k) = dk/norm_ck;
end % for k
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -