⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cshell.rd

📁 一般的支持向量机算法比较单一
💻 RD
字号:
\name{cshell}\alias{cshell}\title{Fuzzy C-Shell Clustering}\usage{cshell(x, centers, iter.max=100, verbose=FALSE, dist="euclidean",       method="cshell", m=2, radius = NULL)}\arguments{  \item{x}{The data matrix, were columns correspond to the variables and    rows to observations.}  \item{centers}{Number of clusters or initial values for cluster centers}  \item{iter.max}{Maximum number of iterations}  \item{verbose}{If \code{TRUE}, make some output during learning}  \item{dist}{Must be one of the following: If \code{"euclidean"}, the    mean square error, if \code{"manhattan"}, the mean absolute error is    computed. Abbreviations are also accepted.}  \item{method}{Currently, only the \code{"cshell"} method; the c-shell fuzzy    clustering method}  \item{m}{The degree of fuzzification. It is defined for values greater    than \emph{1}}  \item{radius}{The radius of resulting clusters} }\description{  The \emph{c}-shell clustering algorithm, the shell prototype-based version  (ring prototypes) of the fuzzy \emph{k}means clustering method.}\details{    The data given by \code{x} is clustered by the fuzzy \emph{c}-shell algorithm.    If \code{centers} is a matrix, its rows are taken as the initial cluster  centers. If \code{centers} is an integer, \code{centers} rows  of \code{x} are randomly chosen as initial values.    The algorithm stops when the maximum number of iterations (given by  \code{iter.max}) is reached.  If \code{verbose} is \code{TRUE}, it displays for each iteration the number  the value of the objective function.  If \code{dist} is \code{"euclidean"}, the distance between the  cluster center and the data points is the Euclidean distance (ordinary  kmeans algorithm). If \code{"manhattan"}, the distance between the  cluster center and the data points is the sum of the absolute values  of the distances of the coordinates.    If \code{method} is \code{"cshell"}, then we have the \emph{c}-shell  fuzzy clustering method.  The parameters \code{m} defines the degree of fuzzification. It is  defined for real values greater than 1 and the bigger it is the more  fuzzy the membership values of the clustered data points are.    The parameter \code{radius} is by default set to \emph{0.2} for every  cluster.}\value{  \code{cshell} returns an object of class \code{"cshell"}.  \item{centers}{The final cluster centers.}  \item{size}{The number of data points in each cluster.}  \item{cluster}{Vector containing the indices of the clusters where    the data points are assigned to. The maximum membership value of a    point is considered for partitioning it to a cluster.}  \item{iter}{The number of iterations performed.}  \item{membership}{a matrix with the membership values of the data points    to the clusters.}  \item{withinerror}{Returns the sum of square distances within the    clusters.}   \item{call}{Returns a call in which all of the arguments are    specified by their names.}  }\author{Evgenia Dimitriadou}\references{  Rajesh N. Dave. \emph{Fuzzy Shell-Clustering and Applications to Circle  Detection in Digital Images.} Int. J. of General Systems, Vol. \bold{16},  pp. 343-355, 1996.}\examples{## a 2-dimensional examplex<-rbind(matrix(rnorm(50,sd=0.3),ncol=2),         matrix(rnorm(50,mean=1,sd=0.3),ncol=2))cl<-cshell(x,2,20,verbose=TRUE,method="cshell",m=2)print(cl)# assign classes to some new datay<-rbind(matrix(rnorm(13,sd=0.3),ncol=2),         matrix(rnorm(13,mean=1,sd=0.3),ncol=2))#         ycl<-predict(cl, y, type="both")        }\keyword{cluster}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -