⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blitz_4.html

📁 A C++ class library for scientific computing
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<P><DT><CODE>backward32(A,dimension)</CODE><DD>3rd derivative, 2nd order accurate.  Factor: <EM>2h^3</EM><table cellpadding=2 rules=all><tr align=right><td></td><td>-4</td><td>-3</td><td>-2</td><td>-1</td><td>0</td></tr><tr align=right><td></td><td bgcolor="#000000"><font color="#ffffff">3</font></td><td bgcolor="#000000"><font color="#ffffff">-14</font></td><td bgcolor="#000000"><font color="#ffffff">24</font></td><td bgcolor="#000000"><font color="#ffffff">-18</font></td><td bgcolor="#000060"><font color="#ffffff">5</font></td></tr></table><P><DT><CODE>backward42(A,dimension)</CODE><DD>4th derivative, 2nd order accurate.  Factor: <EM>h^4</EM><table cellpadding=2 rules=all><tr align=right><td></td><td>-5</td><td>-4</td><td>-3</td><td>-2</td><td>-1</td><td>0</td></tr><tr align=right><td></td><td bgcolor="#000000"><font color="#ffffff">-2</font></td><td bgcolor="#000000"><font color="#ffffff">11</font></td><td bgcolor="#000000"><font color="#ffffff">-24</font></td><td bgcolor="#000000"><font color="#ffffff">26</font></td><td bgcolor="#000000"><font color="#ffffff">-14</font></td><td bgcolor="#000060"><font color="#ffffff">3</font></td></tr></table></DL><P>Note that the above are available in normalized versions <CODE>backward11n</CODE>,<CODE>backward21n</CODE>, ..., <CODE>backward42n</CODE> which have factors of <EM>h</EM>,<EM>h^2</EM>, <EM>h^3</EM>, or <EM>h^4</EM> as appropriate.  </P><P>These are available in multicomponent versions: for example,<CODE>backward42(A,component,dimension)</CODE> gives the backward42 operator forthe specified component (Components are numbered 0, 1, ... N-1).</P><P><HR SIZE="6"><A NAME="SEC112"></A><TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0><TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC111"> &lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC113"> &gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC113"> &lt;&lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC108"> Up </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC119"> &gt;&gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz.html#SEC_Top">Top</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_toc.html#SEC_Contents">Contents</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[Index]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_abt.html#SEC_About"> ? </A>]</TD></TR></TABLE><H3> 4.4.4 Laplacian (<EM>nabla ^2</EM>) operators </H3><!--docid::SEC112::--><P><DL COMPACT><DT><CODE>Laplacian2D(A)</CODE><DD>2nd order accurate, 2-dimensional laplacian.  Factor: <EM>h^2</EM><table cellpadding=2 rules=all><tr align=right><td></td><td>-1</td><td>0</td><td>1</td></tr><tr align=right><td>-1</td><td></td><td bgcolor="#000000"><font color="#ffffff">1</font></td><td></td></tr><tr align=right><td>0</td><td bgcolor="#000000"><font color="#ffffff">1</font></td><td bgcolor="#000060"><font color="#ffffff">-4</font></td><td bgcolor="#000000"><font color="#ffffff">1</font></td></tr><tr align=right><td>1</td><td></td><td bgcolor="#000000"><font color="#ffffff">1</font></td><td></td></tr></table><P><DT><CODE>Laplacian3D(A)</CODE><DD>2nd order accurate, 3-dimensional laplacian.  Factor: <EM>h^2</EM><P><DT><CODE>Laplacian2D4(A)</CODE><DD>4th order accurate, 2-dimensional laplacian.  Factor: <EM>12h^2</EM><table cellpadding=2 rules=all><tr align=right><td></td><td>-2</td><td>-1</td><td>0</td><td>1</td><td>2</td></tr><tr align=right><td>-2</td><td></td><td></td><td bgcolor="#000000"><font color="#ffffff">-1</font></td><td></td><td></td></tr><tr align=right><td>-1</td><td></td><td></td><td bgcolor="#000000"><font color="#ffffff">16</font></td><td></td><td></td></tr><tr align=right><td>0</td><td bgcolor="#000000"><font color="#ffffff">-1</font></td><td bgcolor="#000000"><font color="#ffffff">16</font></td><td bgcolor="#000060"><font color="#ffffff">-60</font></td><td bgcolor="#000000"><font color="#ffffff">16</font></td><td bgcolor="#000000"><font color="#ffffff">-1</font></td></tr><tr align=right><td>1</td><td></td><td></td><td bgcolor="#000000"><font color="#ffffff">16</font></td><td></td><td></td></tr><tr align=right><td>2</td><td></td><td></td><td bgcolor="#000000"><font color="#ffffff">-1</font></td><td></td><td></td></tr></table><P><DT><CODE>Laplacian3D4(A)</CODE><DD>4th order accurate, 3-dimensional laplacian.  Factor: <EM>12h^2</EM></DL><P>Note that the above are available in normalized versions<CODE>Laplacian2D4n</CODE>, <CODE>Laplacian3D4n</CODE> which have factors <EM>h^2</EM>.</P><P><HR SIZE="6"><A NAME="SEC113"></A><TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0><TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC112"> &lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC114"> &gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC114"> &lt;&lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC108"> Up </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC119"> &gt;&gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz.html#SEC_Top">Top</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_toc.html#SEC_Contents">Contents</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[Index]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_abt.html#SEC_About"> ? </A>]</TD></TR></TABLE><H3> 4.4.5 Gradient (<EM>nabla</EM>) operators </H3><!--docid::SEC113::--><P>These return <CODE>TinyVector</CODE>s of the appropriate numeric type and length:</P><P><DL COMPACT><DT><CODE>grad2D(A)</CODE><DD>2nd order, 2-dimensional gradient (vector of first derivatives), generatedusing the central12 operator.  Factor: <EM>2h</EM><P><DT><CODE>grad2D4(A)</CODE><DD>4th order, 2-dimensional gradient, using central14 operator.  Factor: <EM>12h</EM><P><DT><CODE>grad3D(A)</CODE><DD>2nd order, 3-dimensional gradient, using central12 operator.  Factor: <EM>2h</EM><P><DT><CODE>grad3D4(A)</CODE><DD>4th order, 3-dimensional gradient, using central14 operator.  Factor: <EM>12h</EM></DL><P>These are available in normalized versions <CODE>grad2Dn</CODE>, <CODE>grad2D4n</CODE>,<CODE>grad3Dn</CODE> and <CODE>grad3D4n</CODE> which have factors <EM>h</EM>.</P><P><HR SIZE="6"><A NAME="SEC114"></A><TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0><TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC113"> &lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC115"> &gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC115"> &lt;&lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC108"> Up </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC119"> &gt;&gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz.html#SEC_Top">Top</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_toc.html#SEC_Contents">Contents</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[Index]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_abt.html#SEC_About"> ? </A>]</TD></TR></TABLE><H3> 4.4.6 Jacobian operators </H3><!--docid::SEC114::--><P>The Jacobian operators are defined over 3D vector fields only (e.g.<CODE>Array&#60;TinyVector&#60;double,3&#62;,3&#62;</CODE>).  They return a<CODE>TinyMatrix&#60;T,3,3&#62;</CODE> where T is the numeric type of the vector field.</P><P><DL COMPACT><DT><CODE>Jacobian3D(A)</CODE><DD>2nd order, 3-dimensional Jacobian using the central12 operator.  Factor:<EM>2h</EM>.<P><DT><CODE>Jacobian3D4(A)</CODE><DD>4th order, 3-dimensional Jacobian using the central14 operator.  Factor:<EM>12h</EM>.</DL><P>These are also available in normalized versions <CODE>Jacobian3Dn</CODE> and<CODE>Jacobain3D4n</CODE> which have factors <EM>h</EM>.</P><P><HR SIZE="6"><A NAME="SEC115"></A><TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0><TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC114"> &lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC116"> &gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC116"> &lt;&lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC108"> Up </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC119"> &gt;&gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz.html#SEC_Top">Top</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_toc.html#SEC_Contents">Contents</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[Index]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_abt.html#SEC_About"> ? </A>]</TD></TR></TABLE><H3> 4.4.7 Grad-squared operators </H3><!--docid::SEC115::--><P>There are also grad-squared operators, which return <CODE>TinyVector</CODE>s ofsecond derivatives:</P><P><DL COMPACT><DT><CODE>gradSqr2D(A)</CODE><DD>2nd order, 2-dimensional grad-squared (vector of second derivatives),generated using the central22 operator.  Factor: <EM>h^2</EM><P><DT><CODE>gradSqr2D4(A)</CODE><DD>4th order, 2-dimensional grad-squared, using central24 operator.  Factor:<EM>12h^2</EM><P><DT><CODE>gradSqr3D(A)</CODE><DD>2nd order, 3-dimensional grad-squared, using the central22 operator.Factor: <EM>h^2</EM><P><DT><CODE>gradSqr3D4(A)</CODE><DD>4th order, 3-dimensional grad-squared, using central24 operator.  Factor:<EM>12h^2</EM></DL><P>Note that the above are available in normalized versions <CODE>gradSqr2Dn</CODE>,<CODE>gradSqr2D4n</CODE>, <CODE>gradSqr3Dn</CODE>, <CODE>gradSqr3D4n</CODE> which have factors<EM>h^2</EM>.</P><P><HR SIZE="6"><A NAME="SEC116"></A><TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0><TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC115"> &lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC117"> &gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC117"> &lt;&lt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC108"> Up </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_4.html#SEC119"> &gt;&gt; </A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT"> &nbsp; <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz.html#SEC_Top">Top</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_toc.html#SEC_Contents">Contents</A>]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[Index]</TD><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="blitz_abt.html#SEC_About"> ? </A>]</TD></TR></TABLE><H3> 4.4.8 Curl (<EM>nabla times</EM>) operators </H3><!--docid::SEC116::--><P>These curl operators return scalar values:</P><P><DL COMPACT><DT><CODE>curl(Vx,Vy)</CODE><DD>2nd order curl operator using the central12 operator.  Factor: <EM>2h</EM><P><DT><CODE>curl4(Vx,Vy)</CODE><DD>4th order curl operator using the central14 operator.  Factor: <EM>12h</EM><P><DT><CODE>curl2D(V)</CODE><DD>2nd order curl operator on a 2D vector field (e.g.<CODE>Array&#60;TinyVector&#60;float,2&#62;,2&#62;</CODE>), using the central12 operator.  Factor:<EM>2h</EM><P><DT><CODE>curl2D4(V)</CODE><DD>4th order curl operator on a 2D vector field, using the central12 operator.Factor: <EM>12h</EM></DL><P>Available in normalized forms <CODE>curln</CODE>, <CODE>curl4n</CODE>, <CODE>curl2Dn</CODE>,<CODE>curl2D4n</CODE>.</P><P>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -