📄 qcd.cpp
字号:
#include <blitz/tinymat.h>#include <blitz/vector.h>#include <blitz/benchext.h>#include <blitz/rand-uniform.h>#ifdef BZ_HAVE_COMPLEXBZ_USING_NAMESPACE(blitz)#if defined(BZ_FORTRAN_SYMBOLS_WITH_TRAILING_UNDERSCORES) #define qcdf qcdf_ #define qcdf2 qcdf2_#elif defined( BZ_FORTRAN_SYMBOLS_CAPS) #define qcdf QCDF #define qcdf2 QCDF2#endifextern "C" { void qcdf(const void* M, void* res, const void* src, const int& N, const int& iters); void qcdf2(const void* M, void* res, const void* src, const int& N, const int& iters);}int QCDBlitzVersion(BenchmarkExt<int>& bench);int QCDBlitzTunedVersion(BenchmarkExt<int>& bench);int QCDFortran77Version(BenchmarkExt<int>& bench);int QCDFortran77TunedVersion(BenchmarkExt<int>& bench);void initializeRandomDouble(double* data, int numElements);int main(){ cout << "Blitz++ QCD Benchmark" << endl << "Working... (this may take a while) "; cout.flush(); BenchmarkExt<int> bench("Lattice QCD Benchmark", 4); bench.setRateDescription("Millions of operations/s"); bench.beginBenchmarking(); QCDBlitzVersion(bench); QCDBlitzTunedVersion(bench); QCDFortran77Version(bench); QCDFortran77TunedVersion(bench); bench.endBenchmarking(); bench.saveMatlabGraph("qcd.m"); cout << "Done." << endl; return 0;}int QCDBlitzVersion(BenchmarkExt<int>& bench){ typedef TinyMatrix<complex<double>, 3, 2> spinor; typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge; bench.beginImplementation("Blitz++"); while (!bench.doneImplementationBenchmark()) { int length = bench.getParameter(); int iters = (int)bench.getIterations();cout << "length = " << length << endl; Vector<spinor> res(length), src(length); Vector<SU3Gauge> M(length); initializeRandomDouble((double*)src.data(), length * sizeof(spinor) / sizeof(double)); initializeRandomDouble((double*)M.data(), length * sizeof(SU3Gauge) / sizeof(double)); bench.start(); for (long i=0; i < iters; ++i) { for (int i=0; i < length; ++i) res[i] = product(M[i], src[i]); } bench.stop(); // Time overhead bench.startOverhead(); for (long i=0; i < iters; ++i) { } bench.stopOverhead(); } bench.endImplementation(); return 0;} typedef TinyMatrix<complex<double>, 3, 2> spinor; typedef TinyMatrix<complex<double>, 3, 3> gaugeFieldElement; struct latticeUnit { spinor one; gaugeFieldElement gauge; spinor two; };int QCDBlitzTunedVersion(BenchmarkExt<int>& bench){ bench.beginImplementation("Blitz++ (tuned)"); while (!bench.doneImplementationBenchmark()) { int length = bench.getParameter(); int iters = (int)bench.getIterations(); Vector<latticeUnit> lattice(length); initializeRandomDouble((double*)lattice.data(), length * sizeof(latticeUnit) / sizeof(double)); bench.start(); for (long i=0; i < iters; ++i) { for (int i=0; i < length; ++i) lattice[i].two = product(lattice[i].gauge, lattice[i].one); } bench.stop(); // Time overhead bench.startOverhead(); for (long i=0; i < iters; ++i) { } bench.stopOverhead(); } bench.endImplementation(); return 0;}int QCDFortran77Version(BenchmarkExt<int>& bench){ // Use Blitz++ library only to allocate space for the // arrays. typedef TinyMatrix<complex<double>, 3, 2> spinor; typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge; bench.beginImplementation("Fortran 77"); while (!bench.doneImplementationBenchmark()) { int length = bench.getParameter(); int iters = (int)bench.getIterations(); Vector<spinor> res(length), src(length); Vector<SU3Gauge> M(length); initializeRandomDouble((double*)src.data(), length * sizeof(spinor) / sizeof(double)); initializeRandomDouble((double*)M.data(), length * sizeof(SU3Gauge) / sizeof(double)); bench.start(); qcdf(M.data(), res.data(), src.data(), length, iters); bench.stop(); // Time overhead bench.startOverhead(); for (long i=0; i < iters; ++i) { } bench.stopOverhead(); } bench.endImplementation(); return 0;}int QCDFortran77TunedVersion(BenchmarkExt<int>& bench){ // Use Blitz++ library only to allocate space for the // arrays. typedef TinyMatrix<complex<double>, 3, 2> spinor; typedef TinyMatrix<complex<double>, 3, 3> SU3Gauge; bench.beginImplementation("Fortran 77 Hand-tuned"); while (!bench.doneImplementationBenchmark()) { int length = bench.getParameter(); int iters = (int)bench.getIterations(); Vector<spinor> res(length), src(length); Vector<SU3Gauge> M(length); initializeRandomDouble((double*)src.data(), length * sizeof(spinor) / sizeof(double)); initializeRandomDouble((double*)M.data(), length * sizeof(SU3Gauge) / sizeof(double)); bench.start(); qcdf2(M.data(), res.data(), src.data(), length, iters); bench.stop(); // Time overhead bench.startOverhead(); for (long i=0; i < iters; ++i) { } bench.stopOverhead(); } bench.endImplementation(); return 0;}void initializeRandomDouble(double* data, int numElements){ // This is a temporary kludge until I implement random complex // numbers. static Random<Uniform> rnd; for (int i=0; i < numElements; ++i) data[i] = rnd.random();}#else // BZ_HAVE_COMPLEX#include <iostream.h>int main(){ cout << "This benchmark requires <complex> from the ISO/ANSI C++ standard." << endl; return 0;}#endif // BZ_HAVE_COMPLEX
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -