⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gamma.h

📁 A C++ class library for scientific computing
💻 H
字号:
/* * Gamma distribution * * Source: Ahrens, J.H. and Dieter, U., Generating Gamma variates * by a modified rejection technique.  Comm. ACM, 25,1 (Jan. 1982)  * pp. 47-54. * * This code has been adapted from RANDLIB.C 1.3, by * Barry W. Brown, James Lovato, Kathy Russell, and John Venier. * Code was originally by Ahrens and Dieter (see above). * * Adapter's notes: * NEEDS_WORK: more precision for literals. * NEEDS_WORK: ideally the normal_ member should be driven from * the same IRNG as the Gamma object, in the event that independentState * is used.  Not clear how this could be accomplished. */#ifndef BZ_RANDOM_GAMMA#define BZ_RANDOM_GAMMA#ifndef BZ_RANDOM_UNIFORM #include <random/uniform.h>#endif#ifndef BZ_RANDOM_NORMAL #include <random/normal.h>#endif#ifndef BZ_RANDOM_EXPONENTIAL #include <random/exponential.h>#endif#ifndef BZ_NUMINQUIRE_H #include <blitz/numinquire.h>#endifBZ_NAMESPACE(ranlib)template<typename T = double, typename IRNG = defaultIRNG,     typename stateTag = defaultState>class Gamma : public UniformOpen<T,IRNG,stateTag>{public:    typedef T T_numtype;    Gamma()    {        setMean(1.0);    }    Gamma(T mean)    {        setMean(mean);    }    T random();    void setMean(T mean)    {        BZPRECONDITION(mean >= 1.0);        a = mean;    }protected:    T ranf()     {         return UniformOpen<T,IRNG,stateTag>::random();     }    T snorm()    {        return normal_.random();    }    T sexpo()    {        return exponential_.random();    }    T fsign(T num, T sign)    {        /* Transfers sign of argument sign to argument num */        if ((sign>0.0L && num<0.0L)||(sign<0.0L && num>0.0L))            return -num;        else             return num;    }    NormalUnit<T,IRNG,sharedState> normal_;    ExponentialUnit<T,IRNG,sharedState> exponential_;    T a;};template<typename T, typename IRNG, typename stateTag>T Gamma<T,IRNG,stateTag>::random(){    /*     INPUT: A =PARAMETER (MEAN) OF THE STANDARD GAMMA DISTRIBUTION     OUTPUT: SGAMMA = SAMPLE FROM THE GAMMA-(A)-DISTRIBUTION     COEFFICIENTS Q(K) - FOR Q0 = SUM(Q(K)*A**(-K))     COEFFICIENTS A(K) - FOR Q = Q0+(T*T/2)*SUM(A(K)*V**K)     COEFFICIENTS E(K) - FOR EXP(Q)-1 = SUM(E(K)*Q**K)     PREVIOUS A PRE-SET TO ZERO - AA IS A', AAA IS A"     SQRT32 IS THE SQUAREROOT OF 32 = 5.656854249492380     */static T q1 = 4.166669E-2;static T q2 = 2.083148E-2;static T q3 = 8.01191E-3;static T q4 = 1.44121E-3;static T q5 = -7.388E-5;static T q6 = 2.4511E-4;static T q7 = 2.424E-4;static T a1 = 0.3333333;static T a2 = -0.250003;static T a3 = 0.2000062;static T a4 = -0.1662921;static T a5 = 0.1423657;static T a6 = -0.1367177;static T a7 = 0.1233795;static T e1 = 1.0;static T e2 = 0.4999897;static T e3 = 0.166829;static T e4 = 4.07753E-2;static T e5 = 1.0293E-2;static T aa = 0.0;static T aaa = 0.0;static T sqrt32 = 5.656854249492380195206754896838792314280;/* JJV added b0 to fix rare and subtle bug */static T sgamma,s2,s,d,t,x,u,r,q0,b,b0,si,c,v,q,e,w,p;    if(a == aa) goto S10;    if(a < 1.0) goto S120;/*     STEP  1:  RECALCULATIONS OF S2,S,D IF A HAS CHANGED*/    aa = a;    s2 = a-0.5;    s = sqrt(s2);    d = sqrt32-12.0*s;S10:/*     STEP  2:  T=STANDARD NORMAL DEVIATE,               X=(S,1/2)-NORMAL DEVIATE.               IMMEDIATE ACCEPTANCE (I)*/    t = snorm();    x = s+0.5*t;    sgamma = x*x;    if(t >= 0.0) return sgamma;/*     STEP  3:  U= 0,1 -UNIFORM SAMPLE. SQUEEZE ACCEPTANCE (S)*/    u = ranf();    if(d*u <= t*t*t) return sgamma;/*     STEP  4:  RECALCULATIONS OF Q0,B,SI,C IF NECESSARY*/    if(a == aaa) goto S40;    aaa = a;    r = 1.0/ a;    q0 = ((((((q7*r+q6)*r+q5)*r+q4)*r+q3)*r+q2)*r+q1)*r;/*               APPROXIMATION DEPENDING ON SIZE OF PARAMETER A               THE CONSTANTS IN THE EXPRESSIONS FOR B, SI AND               C WERE ESTABLISHED BY NUMERICAL EXPERIMENTS*/    if(a <= 3.686) goto S30;    if(a <= 13.022) goto S20;/*               CASE 3:  A .GT. 13.022*/    b = 1.77;    si = 0.75;    c = 0.1515/s;    goto S40;S20:/*               CASE 2:  3.686 .LT. A .LE. 13.022*/    b = 1.654+7.6E-3*s2;    si = 1.68/s+0.275;    c = 6.2E-2/s+2.4E-2;    goto S40;S30:/*               CASE 1:  A .LE. 3.686*/    b = 0.463+s+0.178*s2;    si = 1.235;    c = 0.195/s-7.9E-2+1.6E-1*s;S40:/*     STEP  5:  NO QUOTIENT TEST IF X NOT POSITIVE*/    if(x <= 0.0) goto S70;/*     STEP  6:  CALCULATION OF V AND QUOTIENT Q*/    v = t/(s+s);    if(fabs(v) <= 0.25) goto S50;    q = q0-s*t+0.25*t*t+(s2+s2)*log(1.0+v);    goto S60;S50:    q = q0+0.5*t*t*((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v;S60:/*     STEP  7:  QUOTIENT ACCEPTANCE (Q)*/    if(log(1.0-u) <= q) return sgamma;S70:/*     STEP  8:  E=STANDARD EXPONENTIAL DEVIATE               U= 0,1 -UNIFORM DEVIATE               T=(B,SI)-DOUBLE EXPONENTIAL (LAPLACE) SAMPLE*/    e = sexpo();    u = ranf();    u += (u-1.0);    t = b+fsign(si*e,u);/*     STEP  9:  REJECTION IF T .LT. TAU(1) = -.71874483771719*/    if(t < -0.7187449) goto S70;/*     STEP 10:  CALCULATION OF V AND QUOTIENT Q*/    v = t/(s+s);    if(fabs(v) <= 0.25) goto S80;    q = q0-s*t+0.25*t*t+(s2+s2)*log(1.0+v);    goto S90;S80:    q = q0+0.5*t*t*((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v;S90:/*     STEP 11:  HAT ACCEPTANCE (H) (IF Q NOT POSITIVE GO TO STEP 8)*/    if(q <= 0.0) goto S70;    if(q <= 0.5) goto S100;/* * JJV modified the code through line 115 to handle large Q case */    if(q < 15.0) goto S95;/* * JJV Here Q is large enough that Q = log(exp(Q) - 1.0) (for real Q) * JJV so reformulate test at 110 in terms of one EXP, if not too big * JJV 87.49823 is close to the largest real which can be * JJV exponentiated (87.49823 = log(1.0E38)) */    if((q+e-0.5*t*t) > 87.49823) goto S115;    if(c*fabs(u) > exp(q+e-0.5*t*t)) goto S70;    goto S115;S95:    w = exp(q)-1.0;    goto S110;S100:    w = ((((e5*q+e4)*q+e3)*q+e2)*q+e1)*q;S110:/*               IF T IS REJECTED, SAMPLE AGAIN AT STEP 8*/    if(c*fabs(u) > w*exp(e-0.5*t*t)) goto S70;S115:    x = s+0.5*t;    sgamma = x*x;    return sgamma;S120:/*     ALTERNATE METHOD FOR PARAMETERS A BELOW 1  (.3678794=EXP(-1.))     JJV changed B to B0 (which was added to declarations for this)     JJV in 120 to END to fix rare and subtle bug.     JJV Line: 'aa = 0.0' was removed (unnecessary, wasteful).     JJV Reasons: the state of AA only serves to tell the A >= 1.0     JJV case if certain A-dependent constants need to be recalculated.     JJV The A < 1.0 case (here) no longer changes any of these, and     JJV the recalculation of B (which used to change with an     JJV A < 1.0 call) is governed by the state of AAA anyway.    aa = 0.0;*/    b0 = 1.0+0.3678794*a;S130:    p = b0*ranf();    if(p >= 1.0) goto S140;    sgamma = exp(log(p)/ a);    if(sexpo() < sgamma) goto S130;    return sgamma;S140:    sgamma = -log((b0-p)/ a);    if(sexpo() < (1.0-a)*log(sgamma)) goto S130;    return sgamma;}BZ_NAMESPACE_END#endif // BZ_RANDOM_GAMMA

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -