📄 gauss_evaluate.m
字号:
function w = gauss_evaluate(v,S,logflag)
%function w = gauss_evaluate(v,S,logflag)
%
% INPUTS:
% v - a set of innovation vectors.
% S - the covariance matrix for the innovations.
% logflag - <optional> - if 1 computes the log-likelihood, otherwise computes
% the likelihood.
%
% OUTPUT:
% w - set of Gaussian likelihoods or log-likelihoods for each v(:,i).
%
% This implementation uses the Cholesky factor of S to compute the likelihoods
% and so is more numerically stable than a simple full covariance form.
% This function is identical to gauss_likelihood().
%
% Tim Bailey 2005.
if nargin == 2, logflag = 0; end
D = size(v,1);
Sc = chol(S)';
nin = Sc\v; % normalised innovation
E = -0.5 * sum(nin.*nin, 1); % Gaussian exponential term
% Note: writing sum(x.*x, 1) is a fast way to compute sets of inner-products.
if logflag ~= 1
C = (2*pi)^(D/2) * prod(diag(Sc)); % normalising term (makes Gaussian hyper-volume equal 1)
w = exp(E) / C; % likelihood
else
C = 0.5*D*log(2*pi) + sum(log(diag(Sc))); % log of normalising term
w = E - C; % log-likelihood
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -