📄 lpp.m
字号:
function [eigvector, eigvalue] = LPP(X, W, options)
% LPP: Locality Preserving Projections
%
% [eigvector, eigvalue] = LPP(X, W, options)
%
% Input:
% X - Data matrix. Each row vector of fea is a data point.
% W - Affinity matrix. You can either call "constructW"
% to construct the W, or construct it by yourself.
% options - Struct value in Matlab. The fields in options
% that can be set:
% ReducedDim - The dimensionality of the reduced
% subspace. If 0, all the dimensions
% will be kept. Default is 30.
%
% Regu - 1: regularized solution,
% a* = argmax (a'X'WXa)/(a'X'DXa+alpha*I)
% 0: solve the sinularity problem by SVD
% Default: 1
%
% alpha - The regularization parameter. Valid
% when Regu==1. Default value is 0.1.
%
% ReguType - 'Ridge': Tikhonov regularization
% 'Custom': User provided
% regularization matrix
% Default: 'Ridge'
% regularizerR - (nFea x nFea) regularization
% matrix which should be provided
% if ReguType is 'Custom'. nFea is
% the feature number of data
% matrix
%
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100%, all the non-zero
% eigenvalues will be kept.
% If PCARatio > 1, the PCA step
% will keep exactly PCARatio principle
% components (does not exceed the
% exact number of non-zero components).
%
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of LPP eigen-problem.
%
%
% Examples:
%
% fea = rand(50,70);
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'KNN';
% options.k = 5;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
% options.PCARatio = 0.99
% [eigvector, eigvalue] = LPP(fea, W, options);
% Y = fea*eigvector;
%
%
% fea = rand(50,70);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.bLDA = 1;
% W = constructW(fea,options);
% options.PCARatio = 1;
% [eigvector, eigvalue] = LPP(fea, W, options);
% Y = fea*eigvector;
%
%
% Note: After applying some simple algebra, the smallest eigenvalue problem:
% X^T*L*X = \lemda X^T*D*X
% is equivalent to the largest eigenvalue problem:
% X^T*W*X = \beta X^T*D*X
% where L=D-W; \lemda= 1 - \beta.
% Thus, the smallest eigenvalue problem can be transformed to a largest
% eigenvalue problem. Such tricks are adopted in this code for the
% consideration of calculation precision of Matlab.
%
%
% See also constructW, LGE
%
%Reference:
% Xiaofei He, and Partha Niyogi, "Locality Preserving Projections"
% Advances in Neural Information Processing Systems 16 (NIPS 2003),
% Vancouver, Canada, 2003.
%
% Xiaofei He, Shuicheng Yan, Yuxiao Hu, Partha Niyogi, and Hong-Jiang
% Zhang, "Face Recognition Using Laplacianfaces", IEEE PAMI, Vol. 27, No.
% 3, Mar. 2005.
%
% Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using
% Locality Preserving Indexing" IEEE TKDE, Dec. 2005.
%
% Deng Cai, Xiaofei He and Jiawei Han, "Using Graph Model for Face Analysis",
% Technical Report, UIUCDCS-R-2005-2636, UIUC, Sept. 2005
%
% Xiaofei He, "Locality Preserving Projections"
% PhD's thesis, Computer Science Department, The University of Chicago,
% 2005.
%
% Written by Deng Cai (dengcai2 AT cs.uiuc.edu), April/2004, Feb/2006,
% May/2007
if (~exist('options','var'))
options = [];
end
[nSmp,nFea] = size(X);
if size(W,1) ~= nSmp
error('W and X mismatch!');
end
D = full(sum(W,2));
DToPowerHalf = D.^.5;
D_mhalf = DToPowerHalf.^-1;
if nSmp < 5000
tmpD_mhalf = repmat(D_mhalf,1,nSmp);
W = (tmpD_mhalf.*W).*tmpD_mhalf';
clear tmpD_mhalf;
else
[i_idx,j_idx,v_idx] = find(W);
v1_idx = zeros(size(v_idx));
for i=1:length(v_idx)
v1_idx(i) = v_idx(i)*D_mhalf(i_idx(i))*D_mhalf(j_idx(i));
end
W = sparse(i_idx,j_idx,v1_idx);
clear i_idx j_idx v_idx v1_idx
end
W = max(W,W');
%==========================
% If X is too large, the following centering codes can be commented
%==========================
if issparse(X)
X = full(X);
end
sampleMean = mean(X);
X = (X - repmat(sampleMean,nSmp,1));
%==========================
X = repmat(DToPowerHalf,1,nFea).*X;
[eigvector, eigvalue] = LGE(X, W, [], options);
eigIdx = find(eigvalue < 1e-3);
eigvalue (eigIdx) = [];
eigvector(:,eigIdx) = [];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -