📄 cast.c
字号:
/* cast.c -- implementation of CAST-128 (aka CAST5) as described in RFC2144 compile -DTEST to include main() which performs the tests specified in RFC2144 Written by Wim Lewis <wiml@hhhh.org> based entirely on RFC2144. This code is in the public domain. Consult your local laws for possible restrictions on use, distribution, and import/export. RFC2144 states that this algorithm "is available worldwide on a royalty-free basis for commercial and non-commercial uses". This code is a pretty straightforward transliteration of the RFC into C. It has not been optimized much at all: byte-order-independent arithmetic operations are used where order-dependent pointer ops or unions might be faster; the code could be rearranged to give the optimizer a better chance to speed things up; etc. This code requires a vaguely ANSI-ish compiler. Tested with gcc 2.5.8 on i486, i586, i686, hp pa-risc, mc68040, sparc; also with gcc 2.7.2 and (with minor changes) native Sun compiler on sparc History: 21 Jul 1997: wiml : first working version & Python module*/#include "Python.h"#define MODULE_NAME CAST#define BLOCK_SIZE 8#define KEY_SIZE 0/* adjust these according to your compiler/platform. On some machines uint32 will have to be a long. It's OK if uint32 is more than 32 bits. */typedef unsigned int uint32;typedef unsigned char uint8;/* this struct probably belongs in cast.h */typedef struct { /* masking and rotate keys */ uint32 Km[16]; uint8 Kr[16]; /* number of rounds (depends on original unpadded keylength) */ int rounds;} block_state;/* these are the eight 32*256 S-boxes */#include "cast5.c"/* fetch a uint32 from an array of uint8s (with a given offset) */#define fetch(ptr, base) (((((( ptr[base]<< 8 ) | ptr[base+1] )<< 8 ) | ptr[base+2] )<< 8 ) | ptr[base+3])/* this is the round function f(D, Km, Kr) */static uint32 castfunc(uint32 D, uint32 Kmi, uint8 Kri, int type){ uint32 I, f; short Ia, Ib, Ic, Id; switch(type) { case 0: I = (Kmi + D) ; break; case 1: I = (Kmi ^ D) ; break; default: case 2: I = (Kmi - D) ; break; } I &= 0xFFFFFFFF; I = ( I << Kri ) | ( I >> ( 32-Kri ) ); Ia = ( I >> 24 ) & 0xFF; Ib = ( I >> 16 ) & 0xFF; Ic = ( I >> 8 ) & 0xFF; Id = ( I ) & 0xFF; switch(type) { case 0: f = ((S1[Ia] ^ S2[Ib]) - S3[Ic]) + S4[Id]; break; case 1: f = ((S1[Ia] - S2[Ib]) + S3[Ic]) ^ S4[Id]; break; default: case 2: f = ((S1[Ia] + S2[Ib]) ^ S3[Ic]) - S4[Id]; break; } return f;}/* encrypts/decrypts one block of data according to the key schedule pointed to by `key'. Encrypts if decrypt=0, otherwise decrypts. */static void castcrypt(block_state *key, uint8 *block, int decrypt){ uint32 L, R, tmp, f; uint32 Kmi; uint8 Kri; short functype, round; L = fetch(block, 0); R = fetch(block, 4); /* printf("L0 = %08x R0 = %08x\n", L, R); */ for(round = 0; round < key->rounds; round ++) { if (!decrypt) { Kmi = key->Km[round]; Kri = key->Kr[round]; functype = round % 3; } else { Kmi = key->Km[(key->rounds) - round - 1]; Kri = key->Kr[(key->rounds) - round - 1]; functype = (((key->rounds) - round - 1) % 3); } f = castfunc(R, Kmi, Kri, functype); tmp = L; L = R; R = tmp ^ f;/* printf("L%d = %08x R%d = %08x\n", round+1, L, round+1, R); */ } block[0] = ( R & 0xFF000000 ) >> 24; block[1] = ( R & 0x00FF0000 ) >> 16; block[2] = ( R & 0x0000FF00 ) >> 8; block[3] = ( R & 0x000000FF ); block[4] = ( L & 0xFF000000 ) >> 24; block[5] = ( L & 0x00FF0000 ) >> 16; block[6] = ( L & 0x0000FF00 ) >> 8; block[7] = ( L & 0x000000FF );}/* fetch a uint8 from an array of uint32s */#define b(a,n) (((a)[n/4] >> (24-((n&3)*8))) & 0xFF)/* key schedule round functions */#define XZRound(T, F, ki1, ki2, ki3, ki4, \ si11, si12, si13, si14, si15,\ si25,\ si35,\ si45 ) \ T[0] = F[ki1] ^ S5[si11 ] ^ S6[si12 ] ^ S7[si13 ] ^ S8[si14 ] ^ S7[si15];\ T[1] = F[ki2] ^ S5[b(T, 0)] ^ S6[b(T,2)] ^ S7[b(T, 1)] ^ S8[b(T,3)] ^ S8[si25];\ T[2] = F[ki3] ^ S5[b(T, 7)] ^ S6[b(T,6)] ^ S7[b(T, 5)] ^ S8[b(T,4)] ^ S5[si35];\ T[3] = F[ki4] ^ S5[b(T,10)] ^ S6[b(T,9)] ^ S7[b(T,11)] ^ S8[b(T,8)] ^ S6[si45];#define zxround() XZRound(z, x, 0, 2, 3, 1, \ b(x,13), b(x,15), b(x,12), b(x,14),\ b(x, 8), b(x,10), b(x, 9), b(x,11))#define xzround() XZRound(x, z, 2, 0, 1, 3, \ b(z,5), b(z,7), b(z,4), b(z,6), \ b(z,0), b(z,2), b(z,1), b(z,3))#define Kround(T, base, F,\ i11, i12, i13, i14, i15,\ i21, i22, i23, i24, i25,\ i31, i32, i33, i34, i35,\ i41, i42, i43, i44, i45)\ T[base+0] = S5[b(F,i11)] ^ S6[b(F,i12)] ^ S7[b(F,i13)] ^ S8[b(F,i14)] ^ S5[b(F,i15)];\ T[base+1] = S5[b(F,i21)] ^ S6[b(F,i22)] ^ S7[b(F,i23)] ^ S8[b(F,i24)] ^ S6[b(F,i25)];\ T[base+2] = S5[b(F,i31)] ^ S6[b(F,i32)] ^ S7[b(F,i33)] ^ S8[b(F,i34)] ^ S7[b(F,i35)];\ T[base+3] = S5[b(F,i41)] ^ S6[b(F,i42)] ^ S7[b(F,i43)] ^ S8[b(F,i44)] ^ S8[b(F,i45)];/* generates sixteen 32-bit subkeys based on a 4x32-bit input key; modifies the input key *in as well. */static void schedulekeys_half(uint32 *in, uint32 *keys){ uint32 x[4], z[4]; x[0] = in[0]; x[1] = in[1]; x[2] = in[2]; x[3] = in[3]; zxround(); Kround(keys, 0, z, 8, 9, 7, 6, 2, 10, 11, 5, 4, 6, 12, 13, 3, 2, 9, 14, 15, 1, 0, 12); xzround(); Kround(keys, 4, x, 3, 2, 12, 13, 8, 1, 0, 14, 15, 13, 7, 6, 8, 9, 3, 5, 4, 10, 11, 7); zxround(); Kround(keys, 8, z, 3, 2, 12, 13, 9, 1, 0, 14, 15, 12, 7, 6, 8, 9, 2, 5, 4, 10, 11, 6); xzround(); Kround(keys, 12, x, 8, 9, 7, 6, 3, 10, 11, 5, 4, 7, 12, 13, 3, 2, 8, 14, 15, 1, 0, 13); in[0] = x[0]; in[1] = x[1]; in[2] = x[2]; in[3] = x[3];}/* generates a key schedule from an input key */static void castschedulekeys(block_state *schedule, uint8 *key, int keybytes){ uint32 x[4]; uint8 paddedkey[16]; uint32 Kr_wide[16]; int i; for(i = 0; i < keybytes; i++) paddedkey[i] = key[i]; for( ; i < 16 ; i++) paddedkey[i] = 0; if (keybytes <= 10) schedule->rounds = 12; else schedule->rounds = 16; x[0] = fetch(paddedkey, 0); x[1] = fetch(paddedkey, 4); x[2] = fetch(paddedkey, 8); x[3] = fetch(paddedkey, 12); schedulekeys_half(x, schedule->Km); schedulekeys_half(x, Kr_wide); for(i = 0; i < 16; i ++) { /* The Kr[] subkeys are used for 32-bit circular shifts, so we only need to keep them modulo 32 */ schedule->Kr[i] = (uint8)(Kr_wide[i] & 0x1F); }}#ifdef TEST/* This performs a variety of encryptions and verifies that the results match those specified in RFC2144 appendix B. Also verifies that decryption restores the original data. */#include <stdio.h>static block_state sched;void encrypt(key, keylen, in, out) uint8 *key; int keylen; uint8 *in, *out;{ int i; uint8 k[16]; castschedulekeys(&sched, key, keylen); for(i = 0; i < 8; i++) out[i] = in[i]; castcrypt(&sched, out, 0);}void tst(key, keylen, data, result) uint8 *key; int keylen; uint8 *data, *result;{ uint8 d[8]; int i; encrypt(key, keylen, data, d); for(i = 0; i < 8; i++) if (d[i] != result[i]) break; if (i == 8) { printf("-- test ok (encrypt)\n"); } else { for(i = 0; i < 8; i++) printf(" %02x", d[i]); printf(" (computed)\n"); for(i = 0; i < 8; i++) printf(" %02x", result[i]); printf(" (expected)\n"); } /* uses key schedule already set up */ castcrypt(&sched, d, 1); if (bcmp(d, data, 8)) printf(" test FAILED (decrypt)\n"); else printf(" test ok (decrypt)\n"); }uint8 key[16] = { 0x01, 0x23, 0x45, 0x67, 0x12, 0x34, 0x56, 0x78, 0x23, 0x45, 0x67, 0x89, 0x34, 0x56, 0x78, 0x9A };uint8 data[8] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF };/* expected results of encrypting the above with 128, 80, and 40 bits of key length */uint8 out1[8] = { 0x23, 0x8B, 0x4F, 0xE5, 0x84, 0x7E, 0x44, 0xB2 };uint8 out2[8] = { 0xEB, 0x6A, 0x71, 0x1A, 0x2C, 0x02, 0x27, 0x1B };uint8 out3[8] = { 0x7A, 0xC8, 0x16, 0xD1, 0x6E, 0x9B, 0x30, 0x2E };/* expected results of the "full maintenance test" */uint8 afinal[16] = { 0xEE, 0xA9, 0xD0, 0xA2, 0x49, 0xFD, 0x3B, 0xA6, 0xB3, 0x43, 0x6F, 0xB8, 0x9D, 0x6D, 0xCA, 0x92 };uint8 bfinal[16] = { 0xB2, 0xC9, 0x5E, 0xB0, 0x0C, 0x31, 0xAD, 0x71, 0x80, 0xAC, 0x05, 0xB8, 0xE8, 0x3D, 0x69, 0x6E };main(){ /* Appendix B.1 : Single Plaintext-Key-Ciphertext Sets */ tst(key, 16, data, out1); tst(key, 10, data, out2); tst(key, 5, data, out3); /* Appendix B.2 : Full Maintenance Test */ { uint8 abuf[16]; uint8 bbuf[16]; int i; bcopy(key, abuf, 16); bcopy(key, bbuf, 16); printf("\nrunning full maintenance test...\n"); for(i = 0; i < 1000000; i++) { castschedulekeys(&sched, bbuf, 16); castcrypt(&sched, abuf, 0); castcrypt(&sched, abuf+8, 0); castschedulekeys(&sched, abuf, 16); castcrypt(&sched, bbuf, 0); castcrypt(&sched, bbuf+8, 0); if (!(i % 10000)) { fprintf(stdout, "\r%d%% ", i / 10000); fflush(stdout); } } printf("\r \r"); for(i = 0; i < 16; i ++) if (abuf[i] != afinal[i] || bbuf[i] != bfinal[i]) break; if(i == 16) { printf("-- full maintenance test ok\n"); } else { for(i = 0; i < 16; i++) printf(" %02x", abuf[i]); printf("\n"); for(i = 0; i < 16; i++) printf(" %02x", bbuf[i]); printf("\n"); } printf("running maintenance test in reverse...\n"); for(i = 0; i < 1000000; i++) { castschedulekeys(&sched, abuf, 16); castcrypt(&sched, bbuf+8, 1); castcrypt(&sched, bbuf, 1); castschedulekeys(&sched, bbuf, 16); castcrypt(&sched, abuf+8, 1); castcrypt(&sched, abuf, 1); if (!(i % 10000)) { fprintf(stdout, "\r%d%% ", i / 10000); fflush(stdout); } } printf("\r \r"); if (bcmp(abuf, key, 16) || bcmp(bbuf, key, 16)) printf("-- reverse maintenance test FAILED\n"); else printf("-- reverse maintenance test ok\n"); }}#endifstatic voidblock_init(block_state *self, unsigned char *key, int keylength){ /* presumably this will optimize out */ if (sizeof(uint32) < 4 || sizeof(uint8) != 1) { PyErr_SetString(PyExc_SystemError, "CAST module compiled with bad typedefs!"); } /* make sure the key length is within bounds */ if (keylength < 5 || keylength > 16) { PyErr_SetString(PyExc_ValueError, "CAST key must be " "at least 5 bytes and no more than 16 bytes long"); return; } /* do the actual key schedule setup */ castschedulekeys(self, key, keylength);}static voidblock_encrypt(block_state *self, unsigned char *in, unsigned char *out){ memcpy(out, in, 8); castcrypt(self, out, 0);}static void block_decrypt(block_state *self, unsigned char *in, unsigned char *out){ memcpy(out, in, 8); castcrypt(self, out, 1);}#include "block_template.c"
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -