⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spline.c

📁 unix v7是最后一个广泛发布的研究型UNIX版本
💻 C
字号:
#include <stdio.h>#define NP 1000#define INF 1.e37struct proj { int lbf,ubf; float a,b,lb,ub,quant,mult,val[NP]; } x,y;float *diag, *r;float dx = 1.;float ni = 100.;int n;int auta;int periodic;float konst = 0.0;float zero = 0.;/* Spline fit techniquelet x,y be vectors of abscissas and ordinates    h   be vector of differences h9i8=x9i8-x9i-1988    y"  be vector of 2nd derivs of approx functionIf the points are numbered 0,1,2,...,n+1 then y" satisfies(R W Hamming, Numerical Methods for Engineers and Scientists,2nd Ed, p349ff)	h9i8y"9i-1988+2(h9i8+h9i+18)y"9i8+h9i+18y"9i+18		= 6[(y9i+18-y9i8)/h9i+18-(y9i8-y9i-18)/h9i8]   i=1,2,...,nwhere y"908 = y"9n+18 = 0This is a symmetric tridiagonal system of the form	| a918 h928               |  |y"918|      |b918|	| h928 a928 h938            |  |y"928|      |b928|	|    h938 a938 h948         |  |y"938|  =   |b938|	|         .           |  | .|      | .|	|            .        |  | .|      | .|It can be triangularized into	| d918 h928               |  |y"918|      |r918|	|    d928 h938            |  |y"928|      |r928|	|       d938 h948         |  |y"938|  =   |r938|	|          .          |  | .|      | .|	|             .       |  | .|      | .|where	d918 = a918	r908 = 0	d9i8 = a9i8 - h9i8829/d9i-18	1<i<_n	r9i8 = b9i8 - h9i8r9i-18/d9i-1i8	1<_i<_nthe back solution is	y"9n8 = r9n8/d9n8	y"9i8 = (r9i8-h9i+18y"9i+18)/d9i8	1<_i<nsuperficially, d9i8 and r9i8 don't have to be stored for they can berecalculated backward by the formulas	d9i-18 = h9i8829/(a9i8-d9i8)	1<i<_n	r9i-18 = (b9i8-r9i8)d9i-18/h9i8	1<i<_nunhappily it turns out that the recursion forward for dis quite strongly geometrically convergent--and is wildlyunstable going backward.There's similar trouble with r, so the intermediateresults must be kept.Note that n-1 in the program below plays the role of n+1 in the theoryOther boundary conditions_________________________The boundary conditions are easily generalized to handle	y908" = ky918", y9n+18"   = ky9n8"for some constant k.  The above analysis was for k = 0;k = 1 fits parabolas perfectly as well as stright lines;k = 1/2 has been recommended as somehow pleasant.All that is necessary is to add h918 to a918 and h9n+18 to a9n8.Periodic case_____________To do this, add 1 more row and column thus	| a918 h928            h918 |  |y918"|     |b918|	| h928 a928 h938            |  |y928"|     |b928|	|    h938 a948 h948         |  |y938"|     |b938|	|                     |  | .|  =  | .|	|             .       |  | .|     | .|	| h918            h908 a908 |  | .|     | .|where h908=_ h9n+18The same diagonalization procedure works, except forthe effect of the 2 corner elements.  Let s9i8 be the partof the last element in the i8th9 "diagonalized" row thatarises from the extra top corner element.		s918 = h918		s9i8 = -s9i-18h9i8/d9i-18	2<_i<_n+1After "diagonalizing", the lower corner element remains.Call t9i8 the bottom element that appears in the i8th9 colomnas the bottom element to its left is eliminated		t918 = h918		t9i8 = -t9i-18h9i8/d9i-18Evidently t9i8 = s9i8.Elimination along the bottom rowintroduces further corrections to the bottom right elementand to the last element of the right hand side.Call these corrections u and v.	u918 = v918 = 0	u9i8 = u9i-18-s9i-18*t9i-18/d9i-18	v9i8 = v9i-18-r9i-18*t9i-18/d9i-18	2<_i<_n+1The back solution is now obtained as follows	y"9n+18 = (r9n+18+v9n+18)/(d9n+18+s9n+18+t9n+18+u9n+18)	y"9i8 = (r9i8-h9i+18*y9i+18-s9i8*y9n+18)/d9i8	1<_i<_nInterpolation in the interval x9i8<_x<_x9i+18 is by the formula	y = y9i8x9+8 + y9i+18x9-8 -(h8299i+18/6)[y"9i8(x9+8-x9+8839)+y"9i+18(x9-8-x9-8839)]where	x9+8 = x9i+18-x	x9-8 = x-x9i8*/floatrhs(i){	int i_;	double zz;	i_ = i==n-1?0:i;	zz = (y.val[i]-y.val[i-1])/(x.val[i]-x.val[i-1]);	return(6*((y.val[i_+1]-y.val[i_])/(x.val[i+1]-x.val[i]) - zz));}spline(){	float d,s,u,v,hi,hi1;	float h;	float D2yi,D2yi1,D2yn1,x0,x1,yy,a;	int end;	float corr;	int i,j,m;	if(n<3) return(0);	if(periodic) konst = 0;	d = 1;	r[0] = 0;	s = periodic?-1:0;	for(i=0;++i<n-!periodic;){	/* triangularize */		hi = x.val[i]-x.val[i-1];		hi1 = i==n-1?x.val[1]-x.val[0]:			x.val[i+1]-x.val[i];		if(hi1*hi<=0) return(0);		u = i==1?zero:u-s*s/d;		v = i==1?zero:v-s*r[i-1]/d;		r[i] = rhs(i)-hi*r[i-1]/d;		s = -hi*s/d;		a = 2*(hi+hi1);		if(i==1) a += konst*hi;		if(i==n-2) a += konst*hi1;		diag[i] = d = i==1? a:		    a - hi*hi/d; 		}	D2yi = D2yn1 = 0;	for(i=n-!periodic;--i>=0;){	/* back substitute */		end = i==n-1;		hi1 = end?x.val[1]-x.val[0]:			x.val[i+1]-x.val[i];		D2yi1 = D2yi;		if(i>0){			hi = x.val[i]-x.val[i-1];			corr = end?2*s+u:zero;			D2yi = (r[i]-hi1*D2yi1-s*D2yn1+end*v)/				(diag[i]+corr);			if(end) D2yn1 = D2yi;			if(i>1){				a = 2*(hi+hi1);				if(i==1) a += konst*hi;				if(i==n-2) a += konst*hi1;				d = diag[i-1];				s = -s*d/hi; 			}}		else D2yi = D2yn1;		if(!periodic) {			if(i==0) D2yi = konst*D2yi1;			if(i==n-2) D2yi1 = konst*D2yi;			}		if(end) continue;		m = hi1>0?ni:-ni;		m = 1.001*m*hi1/(x.ub-x.lb);		if(m<=0) m = 1;		h = hi1/m;		for(j=m;j>0||i==0&&j==0;j--){	/* interpolate */			x0 = (m-j)*h/hi1;			x1 = j*h/hi1;			yy = D2yi*(x0-x0*x0*x0)+D2yi1*(x1-x1*x1*x1);			yy = y.val[i]*x0+y.val[i+1]*x1 -hi1*hi1*yy/6;			printf("%f ",x.val[i]+j*h);			printf("%f\n",yy);			}		}	return(1);	}readin() {	for(n=0;n<NP;n++){		if(auta) x.val[n] = n*dx+x.lb;		else if(!getfloat(&x.val[n])) break;		if(!getfloat(&y.val[n])) break; } }getfloat(p)	float *p;{	char buf[30];	register c;	int i;	extern double atof();	for(;;){		c = getchar();		if (c==EOF) {			*buf = '\0';			return(0);		}		*buf = c;		switch(*buf){			case ' ':			case '\t':			case '\n':				continue;}		break;}	for(i=1;i<30;i++){		c = getchar();		if (c==EOF) {			buf[i] = '\0';			break;		}		buf[i] = c;		if('0'<=c && c<='9') continue;		switch(c) {			case '.':			case '+':			case '-':			case 'E':			case 'e':				continue;}		break; }	buf[i] = ' ';	*p = atof(buf);	return(1); }getlim(p)	struct proj *p; {	int i;	for(i=0;i<n;i++) {		if(!p->lbf && p->lb>(p->val[i])) p->lb = p->val[i];		if(!p->ubf && p->ub<(p->val[i])) p->ub = p->val[i]; }	}main(argc,argv)	char *argv[];{	extern char *malloc();	int i;	x.lbf = x.ubf = y.lbf = y.ubf = 0;	x.lb = INF;	x.ub = -INF;	y.lb = INF;	y.ub = -INF;	while(--argc > 0) {		argv++;again:		switch(argv[0][0]) {		case '-':			argv[0]++;			goto again;		case 'a':			auta = 1;			numb(&dx,&argc,&argv);			break;		case 'k':			numb(&konst,&argc,&argv);			break;		case 'n':			numb(&ni,&argc,&argv);			break;		case 'p':			periodic = 1;			break;		case 'x':			if(!numb(&x.lb,&argc,&argv)) break;			x.lbf = 1;			if(!numb(&x.ub,&argc,&argv)) break;			x.ubf = 1;			break;		default:			fprintf(stderr, "Bad agrument\n");			exit(1);		}	}	if(auta&&!x.lbf) x.lb = 0;	readin();	getlim(&x);	getlim(&y);	i = (n+1)*sizeof(dx);	diag = (float *)malloc((unsigned)i);	r = (float *)malloc((unsigned)i);	if(r==NULL||!spline()) for(i=0;i<n;i++){		printf("%f ",x.val[i]);		printf("%f\n",y.val[i]); }}numb(np,argcp,argvp)	int *argcp;	float *np;	char ***argvp;{	double atof();	char c;	if(*argcp<=1) return(0);	c = (*argvp)[1][0];	if(!('0'<=c&&c<='9' || c=='-' || c== '.' )) return(0);	*np = atof((*argvp)[1]);	(*argcp)--;	(*argvp)++; 	return(1); }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -