⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dcti.m

📁 linear time-frequency toolbox
💻 M
字号:
function c=dcti(f,N,dim)%DCTI  Discrete Cosine Transform type I%   Usage:  c=dcti(f);%           c=dcti(f,N);%           c=dcti(f,[],dim);%           c=dcti(f,N,dim);%%   DCTI(f) computes the discrete cosine transform of type I of the%   input signal f. If f is a matrix, then the transformation is applied to%   each column. For N-D arrays, the transformation is applied to the first%   dimension.%%   DCTI(f,N) zero-pads or truncates f to length N before doing the%   transformation.%%   DCTI(f,[],dim) applies the transformation along dimension dim. %   DCTI(f,N,dim) does the same, but pads or truncates to length N.%   %   The transform is real (output is real if input is real) and%   it is orthonormal.%%   This transform is its own inverse.%%   Let f be a signal of length L, let c=DCTI(f) and define the vector%   w of length L by  %     w = [1/sqrt(2) 1 1 1 1 ...1/sqrt(2)]%   Then % %                              L-1%     c(n+1) = sqrt(2/(L-1)) * sum w(n+1)*w(m+1)*f(m+1)*cos(pi*n*m/(L-1)) %                              m=0 %%   The implementation of this functions uses a simple algorithm that require%   an FFT of length 2N-2, which might potentially be the product of a large%   prime number. This may cause the function to sometimes execute slowly.%   If guaranteed high speed is a concern, please consider using one of the%   other DCT transforms.%%   SEE ALSO:  DCTII, DCTIV, DSTI%%   REFERENCES:%     K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages,%     Applications. Academic Press, 1990.%     %     M. V. Wickerhauser. Adapted wavelet analysis from theory to software.%     Wellesley-Cambridge Press, Wellesley, MA, 1994.error(nargchk(1,3,nargin));if nargin<3  dim=1;end;if nargin<2  N=[];end;    D=ndims(f);if (prod(size(dim))~=1 || ~isnumeric(dim))  error('dim must be a scalar.');end;if rem(dim,1)~=0  error('dim must be an integer.');end;if (dim<1) || (dim>D)  error(sprintf('dim must be in the range from 1 to %d.',D));end;if (prod(size(N))>1 || ~isnumeric(dim))  error('N must be a scalar or [].');end;if (~isempty(N) && rem(dim,1)~=0)  error('N must be an integer.');end;if dim>1  order=[dim, 1:dim-1,dim+1:D];  % Put the desired dimension first.  f=permute(f,order);end;% Remember the exact size for later.permutedsize=size(f);  % Reshape f to a matrix.f=reshape(f,size(f,1),prod(size(f))/size(f,1));if ~isempty(N)  f=postpad(f,N);  if dim>1    % Remember that we changed the length of the first dim.    permutedsize(1)=N;  end;end;L=size(f,1);W=size(f,2);if L==1  c=f; else  c=zeros(L,W);    f2=[f;flipud(f(2:L-1,:))]/sqrt(2);  f2(1,:)=f2(1,:)*sqrt(2);  f2(L,:)=f2(L,:)*sqrt(2);    % Do DFT.  s1=fft(f2)/sqrt(2*L-2);  % This could be done by a repmat instead.  for w=1:W    c(:,w)=s1(1:L,w)+[0;s1(2*L-2:-1:L+1,w);0];  end;  c(2:L-1,:)=c(2:L-1,:)/sqrt(2);    if isreal(f)    c=real(c);  end;end;% Restore the original, permuted shape.c=reshape(c,permutedsize);if dim>1  % Undo the permutation.  c=ipermute(c,order);end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -