📄 dcti.m
字号:
function c=dcti(f,N,dim)%DCTI Discrete Cosine Transform type I% Usage: c=dcti(f);% c=dcti(f,N);% c=dcti(f,[],dim);% c=dcti(f,N,dim);%% DCTI(f) computes the discrete cosine transform of type I of the% input signal f. If f is a matrix, then the transformation is applied to% each column. For N-D arrays, the transformation is applied to the first% dimension.%% DCTI(f,N) zero-pads or truncates f to length N before doing the% transformation.%% DCTI(f,[],dim) applies the transformation along dimension dim. % DCTI(f,N,dim) does the same, but pads or truncates to length N.% % The transform is real (output is real if input is real) and% it is orthonormal.%% This transform is its own inverse.%% Let f be a signal of length L, let c=DCTI(f) and define the vector% w of length L by % w = [1/sqrt(2) 1 1 1 1 ...1/sqrt(2)]% Then % % L-1% c(n+1) = sqrt(2/(L-1)) * sum w(n+1)*w(m+1)*f(m+1)*cos(pi*n*m/(L-1)) % m=0 %% The implementation of this functions uses a simple algorithm that require% an FFT of length 2N-2, which might potentially be the product of a large% prime number. This may cause the function to sometimes execute slowly.% If guaranteed high speed is a concern, please consider using one of the% other DCT transforms.%% SEE ALSO: DCTII, DCTIV, DSTI%% REFERENCES:% K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages,% Applications. Academic Press, 1990.% % M. V. Wickerhauser. Adapted wavelet analysis from theory to software.% Wellesley-Cambridge Press, Wellesley, MA, 1994.error(nargchk(1,3,nargin));if nargin<3 dim=1;end;if nargin<2 N=[];end; D=ndims(f);if (prod(size(dim))~=1 || ~isnumeric(dim)) error('dim must be a scalar.');end;if rem(dim,1)~=0 error('dim must be an integer.');end;if (dim<1) || (dim>D) error(sprintf('dim must be in the range from 1 to %d.',D));end;if (prod(size(N))>1 || ~isnumeric(dim)) error('N must be a scalar or [].');end;if (~isempty(N) && rem(dim,1)~=0) error('N must be an integer.');end;if dim>1 order=[dim, 1:dim-1,dim+1:D]; % Put the desired dimension first. f=permute(f,order);end;% Remember the exact size for later.permutedsize=size(f); % Reshape f to a matrix.f=reshape(f,size(f,1),prod(size(f))/size(f,1));if ~isempty(N) f=postpad(f,N); if dim>1 % Remember that we changed the length of the first dim. permutedsize(1)=N; end;end;L=size(f,1);W=size(f,2);if L==1 c=f; else c=zeros(L,W); f2=[f;flipud(f(2:L-1,:))]/sqrt(2); f2(1,:)=f2(1,:)*sqrt(2); f2(L,:)=f2(L,:)*sqrt(2); % Do DFT. s1=fft(f2)/sqrt(2*L-2); % This could be done by a repmat instead. for w=1:W c(:,w)=s1(1:L,w)+[0;s1(2*L-2:-1:L+1,w);0]; end; c(2:L-1,:)=c(2:L-1,:)/sqrt(2); if isreal(f) c=real(c); end;end;% Restore the original, permuted shape.c=reshape(c,permutedsize);if dim>1 % Undo the permutation. c=ipermute(c,order);end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -