📄 dctii.m
字号:
function c=dctii(f,N,dim)%DCTII Discrete Consine Transform type II% Usage: c=dctii(f);% c=dctii(f,N);% c=dctii(f,[],dim);% c=dctii(f,N,dim);%% DCTII(f) computes the discrete consine transform of type II of the% input signal f. If f is a matrix, then the transformation is applied to% each column. For N-D arrays, the transformation is applied to the first% dimension.%% DCTII(f,N) zero-pads or truncates f to length N before doing the% transformation.%% DCTII(f,[],dim) applies the transformation along dimension dim. % DCTII(f,N,dim) does the same, but pads or truncates to length N.% % The transform is real (output is real if input is real) and% it is orthonormal.%% This is the inverse of DCTIII.%% Let f be a signal of length L, let c=DCTII(f) and define the vector% w of length L by % w = [1/sqrt(2) 1 1 1 1 ...]% Then % % L-1% c(n+1) = sqrt(2/L) * sum w(n+1)*f(m+1)*cos(pi*n*(m+.5)/L) % m=0 %% SEE ALSO: DCTIII, DCTIV, DSTII%% REFERENCES:% K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages,% Applications. Academic Press, 1990.% % M. V. Wickerhauser. Adapted wavelet analysis from theory to software.% Wellesley-Cambridge Press, Wellesley, MA, 1994.error(nargchk(1,3,nargin));if nargin<3 dim=1;end;if nargin<2 N=[];end; D=ndims(f);if (prod(size(dim))~=1 || ~isnumeric(dim)) error('dim must be a scalar.');end;if rem(dim,1)~=0 error('dim must be an integer.');end;if (dim<1) || (dim>D) error(sprintf('dim must be in the range from 1 to %d.',D));end;if (prod(size(N))>1 || ~isnumeric(dim)) error('N must be a scalar or [].');end;if (~isempty(N) && rem(dim,1)~=0) error('N must be an integer.');end;if dim>1 order=[dim, 1:dim-1,dim+1:D]; % Put the desired dimension first. f=permute(f,order);end;% Remember the exact size for later.permutedsize=size(f); % Reshape f to a matrix.f=reshape(f,size(f,1),prod(size(f))/size(f,1));if ~isempty(N) f=postpad(f,N); if dim>1 % Remember that we changed the length of the first dim. permutedsize(1)=N; end;end;L=size(f,1);W=size(f,2);c=zeros(L,W);m1=1/sqrt(2)*exp(-(0:L-1)*pi*i/(2*L)).';m1(1)=1;m2=1/sqrt(2)*exp((1:L-1)*pi*i/(2*L)).';s1=fft([f;flipud(f)]);% This could be done by a repmat instead.for w=1:W c(:,w)=s1(1:L,w).*m1+[0;s1(2*L:-1:L+2,w).*m2];end;c=c/sqrt(L)/2;if isreal(f) c=real(c);end;% Restore the original, permuted shape.c=reshape(c,permutedsize);if dim>1 % Undo the permutation. c=ipermute(c,order);end;% This is a slow, but convenient way of expressing the algorithm.%R=1/sqrt(2)*[diag(exp((0:L-1)*pi*i/(2*L)));...% zeros(1,L); ...% [zeros(L-1,1),flipud(diag(exp(-(1:L-1)*pi*i/(2*L))))]];%R(1,1)=1;%c=R'*fft([f;flipud(f)])/sqrt(L)/2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -