⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dctiii.m

📁 linear time-frequency toolbox
💻 M
字号:
function c=dctiii(f)%DCTIII  Discrete Consine Transform type III%   Usage:  c=dctiii(f);%           c=dctiii(f,N);%           c=dctiii(f,[],dim);%           c=dctiii(f,N,dim);%%   DCTIII(f) computes the discrete consine transform of type III of the%   input signal f. If f is a matrix, then the transformation is applied to%   each column. For N-D arrays, the transformation is applied to the first%   dimension.%%   DCTIII(f,N) zero-pads or truncates f to length N before doing the%   transformation.%%   DCTIII(f,[],dim) applies the transformation along dimension dim. %   DCTIII(f,N,dim) does the same, but pads or truncates to length N.%%   The transform is real (output is real if input is real) and%   it is orthonormal.%%   This is the inverse of DCTII%%   Let f be a signal of length L, let c=DCTIII(f) and define the vector%   w of length L by  %     w = [1/sqrt(2) 1 1 1 1 ...]%   Then % %                          L-1%     c(n+1) = sqrt(2/L) * sum w(n+1)*f(m+1)*cos(pi*(n+.5)*m/L) %                          m=0 %%   SEE ALSO:  DCTII, DCTIV, DSTII%%   REFERENCES:%     K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages,%     Applications. Academic Press, 1990.%     %     M. V. Wickerhauser. Adapted wavelet analysis from theory to software.%     Wellesley-Cambridge Press, Wellesley, MA, 1994.error(nargchk(1,3,nargin));if nargin<3  dim=1;end;if nargin<2  N=[];end;    D=ndims(f);if (prod(size(dim))~=1 || ~isnumeric(dim))  error('dim must be a scalar.');end;if rem(dim,1)~=0  error('dim must be an integer.');end;if (dim<1) || (dim>D)  error(sprintf('dim must be in the range from 1 to %d.',D));end;if (prod(size(N))>1 || ~isnumeric(dim))  error('N must be a scalar or [].');end;if (~isempty(N) && rem(dim,1)~=0)  error('N must be an integer.');end;if dim>1  order=[dim, 1:dim-1,dim+1:D];  % Put the desired dimension first.  f=permute(f,order);end;% Remember the exact size for later.permutedsize=size(f);  % Reshape f to a matrix.f=reshape(f,size(f,1),prod(size(f))/size(f,1));if ~isempty(N)  f=postpad(f,N);  if dim>1    % Remember that we changed the length of the first dim.    permutedsize(1)=N;  end;end;L=size(f,1);W=size(f,2);c=zeros(2*L,W);m1=1/sqrt(2)*exp(-(0:L-1)*pi*i/(2*L)).';m1(1)=1;  m2=1/sqrt(2)*exp((L-1:-1:1)*pi*i/(2*L)).';for w=1:W  c(:,w)=[m1.*f(:,w);0;m2.*f(L:-1:2,w)];end;c=fft(c)/sqrt(L);c=c(1:L,:);if isreal(f)  c=real(c);end;% Restore the original, permuted shape.c=reshape(c,permutedsize);if dim>1  % Undo the permutation.  c=ipermute(c,order);end;% This is a slow, but convenient way of expressing the above algorithm.%R=1/sqrt(2)*[diag(exp(-(0:L-1)*pi*i/(2*L)));...%	     zeros(1,L); ...%	     [zeros(L-1,1),flipud(diag(exp((1:L-1)*pi*i/(2*L))))]];%R(1,1)=1;%c=fft(R*f)/sqrt(L);%c=c(1:L,:);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -