📄 hermbasis.m
字号:
function [V]=hermbasis(L)%HERMBASIS Orthonormal basis of discrete Hermite functions.% Usage: V=hermbasis(L);%% HERMBASIS(L) will compute an orthonormal basis of discrete Hermite% functions of length L. The vectors are returned as columns in the% output.%% All the vectors in the output are eigenvectors of the discrete Fourier% transform, and resemble samplings of the continuous Hermite functions% to some degree.%% SEE ALSO: DFT, PHERM%% REFERENCES:% H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay. The Fractional Fourier% Transform. John Wiley and Sons, 2001.H=(spdiag(ones(L-1,1),-1)+spdiag(ones(L-1,1),1)+... spdiag(2*cos((0:L-1)*2*pi/L)-4));H(1,L)=1;H(L,1)=1;H=H*pi/(i*2*pi)^2;[V,D]=eig(H);% If L is not a factor of 4, then all the eigenvalues of the tridiagonal% matrix are distinct. If L IS a factor of 4, then one eigenvalue has% multiplicity 2, and we must split the eigenspace belonging to this% eigenvalue into a an even and an odd subspace.if mod(L,4)==0 x=V(:,L/2); x_e=(x+involute(x))/2; x_o=(x-involute(x))/2; x_e=x_e/norm(x_e); x_o=x_o/norm(x_o); V(:,L/2)=x_o; V(:,L/2+1)=x_e;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -